Cushing Cody A, Dawes Alexei J, Hofmann Stefan G, Lau Hakwan, LeDoux Joseph E, Taschereau-Dumouchel Vincent
Department of Psychology, UCLA, Los Angeles, CA, 90095, USA.
RIKEN Center for Brain Science, Wako, Saitama 351-0106, Japan.
PNAS Nexus. 2023 Jan 23;2(1):pgac265. doi: 10.1093/pnasnexus/pgac265. eCollection 2023 Jan.
The mechanisms underlying the subjective experiences of mental disorders remain poorly understood. This is partly due to long-standing over-emphasis on behavioral and physiological symptoms and a de-emphasis of the patient's subjective experiences when searching for treatments. Here, we provide a new perspective on the subjective experience of mental disorders based on findings in neuroscience and artificial intelligence (AI). Specifically, we propose the subjective experience that occurs in visual imagination depends on mechanisms similar to generative adversarial networks that have recently been developed in AI. The basic idea is that a generator network fabricates a prediction of the world, and a discriminator network determines whether it is likely real or not. Given that similar adversarial interactions occur in the two major visual pathways of perception in people, we explored whether we could leverage this AI-inspired approach to better understand the intrusive imagery experiences of patients suffering from mental illnesses such as post-traumatic stress disorder (PTSD) and acute stress disorder. In our model, a nonconscious visual pathway generates predictions of the environment that influence the parallel but interacting conscious pathway. We propose that in some patients, an imbalance in these adversarial interactions leads to an overrepresentation of disturbing content relative to current reality, and results in debilitating flashbacks. By situating the subjective experience of intrusive visual imagery in the adversarial interaction of these visual pathways, we propose testable hypotheses on novel mechanisms and clinical applications for controlling and possibly preventing symptoms resulting from intrusive imagery.
精神障碍的主观体验背后的机制仍未得到充分理解。部分原因在于长期以来过度强调行为和生理症状,而在寻求治疗方法时对患者的主观体验不够重视。在此,我们基于神经科学和人工智能(AI)的研究结果,为精神障碍的主观体验提供一个新视角。具体而言,我们提出视觉想象中出现的主观体验依赖于类似于AI中最近开发的生成对抗网络的机制。基本观点是,一个生成器网络构建对世界的预测,而一个判别器网络则判断其是否可能是真实的。鉴于人类感知的两条主要视觉通路中会发生类似的对抗性交互作用,我们探讨了能否利用这种受AI启发的方法来更好地理解患有创伤后应激障碍(PTSD)和急性应激障碍等精神疾病的患者的侵入性意象体验。在我们的模型中,一条无意识视觉通路生成对环境的预测,这些预测会影响与之平行但相互作用的有意识通路。我们提出,在一些患者中,这些对抗性交互作用的失衡会导致相对于当前现实而言,令人不安的内容过度呈现,并引发使人衰弱的闪回。通过将侵入性视觉意象的主观体验置于这些视觉通路的对抗性交互作用中,我们提出了关于新机制以及控制并可能预防侵入性意象所致症状的临床应用的可测试假设。