Suppr超能文献

肺炎克雷伯菌GEM167中通过增强氧化途径通量由甘油生产1,2 - 丙二醇。

Production of 1,2-propanediol from glycerol in Klebsiella pneumoniae GEM167 with flux enhancement of the oxidative pathway.

作者信息

Jo Min-Ho, Ju Jung-Hyun, Heo Sun-Yeon, Cho Jaehoon, Jeong Ki Jun, Kim Min-Soo, Kim Chul-Ho, Oh Baek-Rock

机构信息

Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.

Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan, Chungcheongnam, 31056, Republic of Korea.

出版信息

Biotechnol Biofuels Bioprod. 2023 Feb 6;16(1):18. doi: 10.1186/s13068-023-02269-4.

Abstract

BACKGROUND

To support the sustainability of biodiesel production, by-products, such as crude glycerol, should be converted into high-value chemical products. 1,2-propanediol (1,2-PDO) has been widely used as a building block in the chemical and pharmaceutical industries. Recently, the microbial bioconversion of lactic acid into 1,2-PDO is attracting attention to overcome limitations of previous biosynthetic pathways for production of 1,2-PDO. In this study, we examined the effect of genetic engineering, metabolic engineering, and control of bioprocess factors on the production of 1,2-PDO from lactic acid by K. pneumoniae GEM167 with flux enhancement of the oxidative pathway, using glycerol as carbon source.

RESULTS

We developed K. pneumoniae GEM167ΔadhE/pBR-1,2PDO, a novel bacterial strain that has blockage of ethanol biosynthesis and biosynthesized 1,2-PDO from lactic acid when glycerol is carbon source. Increasing the agitation speed from 200 to 400 rpm not only increased 1,2-PDO production by 2.24-fold to 731.0 ± 24.7 mg/L at 48 h but also increased the amount of a by-product, 2,3-butanediol. We attempted to inhibit 2,3-butanediol biosynthesis using the approaches of pH control and metabolic engineering. Control of pH at 7.0 successfully increased 1,2-PDO production (1016.5 ± 37.3 mg/L at 48 h), but the metabolic engineering approach was not successful. The plasmid in this strain maintained 100% stability for 72 h.

CONCLUSIONS

This study is the first to report the biosynthesis of 1,2-PDO from lactic acid in K. pneumoniae when glycerol was carbon source. The 1,2-PDO production was enhanced by blocking the synthesis of 2,3-butanediol through pH control. Our results indicate that K. pneumoniae GEM167 has potential for the production of additional valuable chemical products from metabolites produced through oxidative pathways.

摘要

背景

为支持生物柴油生产的可持续性,应将粗甘油等副产品转化为高价值化学产品。1,2 - 丙二醇(1,2 - PDO)已在化学和制药行业中广泛用作基础原料。最近,将乳酸微生物转化为1,2 - PDO以克服先前1,2 - PDO生物合成途径的局限性受到了关注。在本研究中,我们研究了基因工程、代谢工程以及生物过程因素控制对肺炎克雷伯菌GEM167以甘油为碳源通过氧化途径通量增强从乳酸生产1,2 - PDO的影响。

结果

我们构建了肺炎克雷伯菌GEM167ΔadhE/pBR - 1,2PDO,这是一种新型菌株,其乙醇生物合成受阻,当甘油为碳源时可从乳酸生物合成1,2 - PDO。将搅拌速度从200 rpm提高到400 rpm,不仅使48小时时1,2 - PDO产量提高了2.24倍,达到731.0±24.7 mg/L,还增加了副产物2,3 - 丁二醇的量。我们尝试通过pH控制和代谢工程方法抑制2,3 - 丁二醇的生物合成。将pH控制在7.0成功提高了1,2 - PDO产量(48小时时为1016.5±37.3 mg/L),但代谢工程方法未成功。该菌株中的质粒在72小时内保持100%的稳定性。

结论

本研究首次报道了以甘油为碳源时肺炎克雷伯菌从乳酸生物合成1,2 - PDO。通过pH控制阻断2,3 - 丁二醇的合成提高了1,2 - PDO产量。我们的结果表明,肺炎克雷伯菌GEM167具有从通过氧化途径产生的代谢物生产其他有价值化学产品的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验