Alrowais Fadwa, S Alotaibi Saud, Marzouk Radwa, S Salama Ahmed, Rizwanullah Mohammed, Zamani Abu Sarwar, Atta Abdelmageed Amgad, I Eldesouki Mohamed
Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Department of Information Systems, College of Computing and Information System, Umm Al-Qura University, Saudi Arabia.
Cancers (Basel). 2022 Nov 17;14(22):5661. doi: 10.3390/cancers14225661.
Gastric cancer (GC) diagnoses using endoscopic images have gained significant attention in the healthcare sector. The recent advancements of computer vision (CV) and deep learning (DL) technologies pave the way for the design of automated GC diagnosis models. Therefore, this study develops a new Manta Ray Foraging Optimization Transfer Learning technique that is based on Gastric Cancer Diagnosis and Classification (MRFOTL-GCDC) using endoscopic images. For enhancing the quality of the endoscopic images, the presented MRFOTL-GCDC technique executes the Wiener filter (WF) to perform a noise removal process. In the presented MRFOTL-GCDC technique, MRFO with SqueezeNet model is used to derive the feature vectors. Since the trial-and-error hyperparameter tuning is a tedious process, the MRFO algorithm-based hyperparameter tuning results in enhanced classification results. Finally, the Elman Neural Network (ENN) model is utilized for the GC classification. To depict the enhanced performance of the presented MRFOTL-GCDC technique, a widespread simulation analysis is executed. The comparison study reported the improvement of the MRFOTL-GCDC technique for endoscopic image classification purposes with an improved accuracy of 99.25%.
利用内镜图像进行胃癌诊断在医疗保健领域受到了广泛关注。计算机视觉(CV)和深度学习(DL)技术的最新进展为自动化胃癌诊断模型的设计铺平了道路。因此,本研究开发了一种基于内镜图像的胃癌诊断与分类的新型蝠鲼觅食优化迁移学习技术(MRFOTL-GCDC)。为了提高内镜图像的质量,所提出的MRFOTL-GCDC技术执行维纳滤波器(WF)来执行噪声去除过程。在所提出的MRFOTL-GCDC技术中,将带有SqueezeNet模型的MRFO用于导出特征向量。由于反复试验的超参数调整是一个繁琐的过程,基于MRFO算法的超参数调整导致了增强的分类结果。最后,利用埃尔曼神经网络(ENN)模型进行胃癌分类。为了描述所提出的MRFOTL-GCDC技术的增强性能,进行了广泛的仿真分析。比较研究报告了MRFOTL-GCDC技术用于内镜图像分类的改进,准确率提高到了99.25%。