Department of Ophthalmology, Hangil Eye Hospital, 35 Bupyeong-daero, Bupyeong-gu, Incheon, 21388, South Korea.
Department of Ophthalmology, Catholic Kwandong University College of Medicine, Incheon, South Korea.
Sci Rep. 2021 Apr 29;11(1):9275. doi: 10.1038/s41598-021-88543-7.
This cross-sectional study aimed to build a deep learning model for detecting neovascular age-related macular degeneration (AMD) and to distinguish retinal angiomatous proliferation (RAP) from polypoidal choroidal vasculopathy (PCV) using a convolutional neural network (CNN). Patients from a single tertiary center were enrolled from January 2014 to January 2020. Spectral-domain optical coherence tomography (SD-OCT) images of patients with RAP or PCV and a control group were analyzed with a deep CNN. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUROC) were used to evaluate the model's ability to distinguish RAP from PCV. The performances of the new model, the VGG-16, Resnet-50, Inception, and eight ophthalmologists were compared. A total of 3951 SD-OCT images from 314 participants (229 AMD, 85 normal controls) were analyzed. In distinguishing the PCV and RAP cases, the proposed model showed an accuracy, sensitivity, and specificity of 89.1%, 89.4%, and 88.8%, respectively, with an AUROC of 95.3% (95% CI 0.727-0.852). The proposed model showed better diagnostic performance than VGG-16, Resnet-50, and Inception-V3 and comparable performance with the eight ophthalmologists. The novel model performed well when distinguishing between PCV and RAP. Thus, automated deep learning systems may support ophthalmologists in distinguishing RAP from PCV.
本横断面研究旨在构建一种深度学习模型,利用卷积神经网络(CNN)检测新生血管性年龄相关性黄斑变性(AMD),并区分视网膜血管瘤样增生(RAP)和息肉样脉络膜血管病变(PCV)。该研究纳入了 2014 年 1 月至 2020 年 1 月期间来自一家三级医院的患者。使用深度 CNN 分析了 RAP 或 PCV 患者以及对照组的光谱域光学相干断层扫描(SD-OCT)图像。使用敏感性、特异性、准确性和受试者工作特征曲线下的面积(AUROC)评估模型区分 RAP 和 PCV 的能力。比较了新模型、VGG-16、Resnet-50、Inception 和 8 位眼科医生的性能。共分析了 314 名参与者(229 名 AMD,85 名正常对照)的 3951 份 SD-OCT 图像。在区分 PCV 和 RAP 病例时,所提出的模型表现出 89.1%、89.4%和 88.8%的准确性、敏感性和特异性,AUROC 为 95.3%(95%CI 0.727-0.852)。与 VGG-16、Resnet-50 和 Inception-V3 相比,该模型的诊断性能更好,与 8 位眼科医生的表现相当。在区分 PCV 和 RAP 方面,该新模型表现良好。因此,自动化深度学习系统可以帮助眼科医生区分 RAP 和 PCV。