Department of Clinical Imaging, Tohoku University Graduate School of Medicine, Sendai, Japan.
Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
ESC Heart Fail. 2023 Jun;10(3):1597-1604. doi: 10.1002/ehf2.14288. Epub 2023 Feb 14.
Current approaches to classify chronic heart failure (HF) subpopulations may be limited due to the diversity of pathophysiology and co-morbidities in chronic HF. We aimed to elucidate the clusters of chronic patients with HF by data-driven approaches with machine learning in a hospital-based registry.
A total of 4649 patients with a broad spectrum of left ventricular ejection fraction (LVEF) in the CHART-2 (Chronic Heart Failure Analysis and Registry in the Tohoku District-2) study were enrolled to this study. Chronic HF patients were classified using random forest clustering with 56 multiscale clinical parameters. We assessed the influence of the clusters on cardiovascular death, non-cardiovascular death, all-cause death, and free from hospitalization by HF. Latent class analysis using random forest clustering identified 10 clusters with four primary components: cardiac function (LVEF, left atrial and ventricular diameters, diastolic blood pressure, and brain natriuretic peptide), renal function (glomerular filtration rate and blood urea nitrogen), anaemia (red blood cell, haematocrit, haemoglobin, and platelet count), and nutrition (albumin and body mass index). All 11 significant clinical parameters in the four primary components and two disease aetiologies (ischaemic heart disease and valvular heart disease) showed statistically significant differences among the 10 clusters (P < 0.01). Cluster 1 (26.7% of patients), which is characterized by preserved LVEF (<59%, 37% of the total) with lowest brain natriuretic peptide (>111.3 pg/mL, 0.9%) and lowest left atrial diameter (>42 mm, 37.4%), showed the best 5 year survival rate of 98.1% for cardiovascular death, 95.9% for non-cardiovascular death, 92.9% for all-cause death, and 91.7% for free from hospitalization by HF. Cluster 10 (6.0% of the total), which is co-morbid disorders of all four primary components, showed the worst survival rate of 39.1% for cardiovascular death, 68.9% for non-cardiovascular death, 23.9% for all-cause death, and 28.1% for free from hospitalization by HF.
These results suggest the potential applicability of the machine leaning approach, providing useful clinical prognostic information to stratify complex heterogeneity in patients with HF.
由于慢性心力衰竭(HF)患者的病理生理学和合并症存在多样性,目前用于对 HF 亚群进行分类的方法可能存在局限性。本研究旨在通过基于医院的注册研究中的机器学习数据驱动方法阐明 HF 慢性患者的聚类。
本研究共纳入了 CHART-2(东北地区慢性心力衰竭分析和登记-2)研究中具有广泛左心室射血分数(LVEF)范围的 4649 例 HF 慢性患者。采用随机森林聚类对 HF 患者进行分类,聚类分析使用了 56 个多尺度临床参数。我们评估了聚类对心血管死亡、非心血管死亡、全因死亡和 HF 住院无再入院的影响。使用随机森林聚类的潜在类别分析确定了 10 个聚类,这些聚类由四个主要成分组成:心脏功能(LVEF、左心房和心室直径、舒张血压和脑钠肽)、肾功能(肾小球滤过率和血尿素氮)、贫血(红细胞、血细胞比容、血红蛋白和血小板计数)和营养(白蛋白和体重指数)。四个主要成分和两种疾病病因(缺血性心脏病和瓣膜性心脏病)中的 11 个重要临床参数在 10 个聚类中均有统计学差异(P<0.01)。以保留的 LVEF(<59%,占总数的 37%)、最低的脑钠肽(>111.3pg/ml,0.9%)和最低的左心房直径(>42mm,37.4%)为特征的第 1 聚类(占患者总数的 26.7%),其 5 年心血管死亡、非心血管死亡、全因死亡和 HF 住院无再入院的生存率分别为 98.1%、95.9%、92.9%和 91.7%。共患病涉及四个主要成分的第 10 聚类(占总数的 6.0%),其心血管死亡、非心血管死亡、全因死亡和 HF 住院无再入院的生存率分别为 39.1%、68.9%、23.9%和 28.1%。
这些结果表明,机器学习方法具有潜在的适用性,可为 HF 患者的复杂异质性提供有用的临床预后信息。