Departamento de Física, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Campus Pampulha 31270-901, Belo Horizonte, Minas Gerais, 6627, Brazil.
Centro de Tecnologia Em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Braz J Microbiol. 2023 Jun;54(2):769-777. doi: 10.1007/s42770-023-00923-5. Epub 2023 Feb 28.
Fast, precise, and low-cost diagnostic testing to identify persons infected with SARS-CoV-2 virus is pivotal to control the global pandemic of COVID-19 that began in late 2019. The gold standard method of diagnostic recommended is the RT-qPCR test. However, this method is not universally available, and is time-consuming and requires specialized personnel, as well as sophisticated laboratories. Currently, machine learning is a useful predictive tool for biomedical applications, being able to classify data from diverse nature. Relying on the artificial intelligence learning process, spectroscopic data from nasopharyngeal swab and tracheal aspirate samples can be used to leverage characteristic patterns and nuances in healthy and infected body fluids, which allows to identify infection regardless of symptoms or any other clinical or laboratorial tests. Hence, when new measurements are performed on samples of unknown status and the corresponding data is submitted to such an algorithm, it will be possible to predict whether the source individual is infected or not. This work presents a new methodology for rapid and precise label-free diagnosing of SARS-CoV-2 infection in clinical samples, which combines spectroscopic data acquisition and analysis via artificial intelligence algorithms. Our results show an accuracy of 85% for detection of SARS-CoV-2 in nasopharyngeal swab samples collected from asymptomatic patients or with mild symptoms, as well as an accuracy of 97% in tracheal aspirate samples collected from critically ill COVID-19 patients under mechanical ventilation. Moreover, the acquisition and processing of the information is fast, simple, and cheaper than traditional approaches, suggesting this methodology as a promising tool for biomedical diagnosis vis-à-vis the emerging and re-emerging viral SARS-CoV-2 variant threats in the future.
快速、准确且低成本的 SARS-CoV-2 病毒感染诊断检测对于控制始于 2019 年末的 COVID-19 全球大流行至关重要。推荐的金标准诊断方法是 RT-qPCR 检测。然而,这种方法并非普遍可用,而且耗时,需要专业人员和复杂的实验室。目前,机器学习是生物医学应用的一种有用的预测工具,能够对来自不同性质的数据进行分类。依靠人工智能学习过程,可以利用鼻咽拭子和气管抽吸样本的光谱数据来利用健康和感染体液中的特征模式和细微差别,从而能够识别感染,而不论症状或任何其他临床或实验室检测如何。因此,当对未知状态的样本进行新的测量并将相应数据提交给这样的算法时,就可以预测源个体是否感染。这项工作提出了一种用于临床样本中 SARS-CoV-2 快速和精确无标记诊断的新方法,该方法结合了通过人工智能算法进行的光谱数据采集和分析。我们的结果表明,对于从无症状或症状较轻的患者采集的鼻咽拭子样本,该方法对 SARS-CoV-2 的检测准确率为 85%,对于从接受机械通气的重症 COVID-19 患者采集的气管抽吸样本,检测准确率为 97%。此外,信息的采集和处理快速、简单且比传统方法更便宜,表明该方法作为一种有前途的生物医学诊断工具,可用于应对未来新兴和重现的 SARS-CoV-2 变体病毒威胁。