Suppr超能文献

用于全幻灯片图像处理的计算高效自适应解压缩

Computationally efficient adaptive decompression for whole slide image processing.

作者信息

Li Zheyu, Li Bin, Eliceiri Kevin W, Narayanan Vijaykrishnan

机构信息

Department of Computer Science and Engineering, Pennsylvania State University, State College, PA 16801, USA.

Authors contributed equally.

出版信息

Biomed Opt Express. 2023 Jan 6;14(2):667-686. doi: 10.1364/BOE.477515. eCollection 2023 Feb 1.

Abstract

Whole slide image (WSI) analysis is increasingly being adopted as an important tool in modern pathology. Recent deep learning-based methods have achieved state-of-the-art performance on WSI analysis tasks such as WSI classification, segmentation, and retrieval. However, WSI analysis requires a significant amount of computation resources and computation time due to the large dimensions of WSIs. Most of the existing analysis approaches require the complete decompression of the whole image exhaustively, which limits the practical usage of these methods, especially for deep learning-based workflows. In this paper, we present compression domain processing-based computation efficient analysis workflows for WSIs classification that can be applied to state-of-the-art WSI classification models. The approaches leverage the pyramidal magnification structure of WSI files and compression domain features that are available from the raw code stream. The methods assign different decompression depths to the patches of WSIs based on the features directly retained from compressed patches or partially decompressed patches. Patches from the low-magnification level are screened by attention-based clustering, resulting in different decompression depths assigned to the high-magnification level patches at different locations. A finer-grained selection based on compression domain features from the file code stream is applied to select further a subset of the high-magnification patches that undergo a full decompression. The resulting patches are fed to the downstream attention network for final classification. Computation efficiency is achieved by reducing unnecessary access to the high zoom level and expensive full decompression. With the number of decompressed patches reduced, the time and memory costs of downstream training and inference procedures are also significantly reduced. Our approach achieves a 7.2× overall speedup, and the memory cost is reduced by 1.1 orders of magnitudes, while the resulting model accuracy is comparable to the original workflow.

摘要

全玻片图像(WSI)分析在现代病理学中越来越被视为一种重要工具。最近基于深度学习的方法在WSI分析任务(如WSI分类、分割和检索)中取得了领先的性能。然而,由于WSI尺寸巨大,WSI分析需要大量的计算资源和计算时间。现有的大多数分析方法都需要对整个图像进行彻底的完全解压缩,这限制了这些方法的实际应用,特别是对于基于深度学习的工作流程。在本文中,我们提出了基于压缩域处理的计算高效的WSI分类分析工作流程,该流程可应用于先进的WSI分类模型。这些方法利用了WSI文件的金字塔放大结构和从原始代码流中获取的压缩域特征。基于直接从压缩补丁或部分解压缩补丁中保留的特征,为WSI的补丁分配不同的解压缩深度。低倍率级别的补丁通过基于注意力的聚类进行筛选,从而为不同位置的高倍率级别补丁分配不同的解压缩深度。基于文件代码流中的压缩域特征进行更细粒度的选择,以进一步选择进行完全解压缩的高倍率补丁子集。将得到的补丁输入到下游注意力网络进行最终分类。通过减少对高缩放级别不必要的访问和昂贵的完全解压缩来实现计算效率。随着解压缩补丁数量的减少,下游训练和推理过程的时间和内存成本也显著降低。我们的方法实现了7.2倍的整体加速,内存成本降低了1.1个数量级,而得到的模型精度与原始工作流程相当。

相似文献

1
Computationally efficient adaptive decompression for whole slide image processing.
Biomed Opt Express. 2023 Jan 6;14(2):667-686. doi: 10.1364/BOE.477515. eCollection 2023 Feb 1.
2
Masked hypergraph learning for weakly supervised histopathology whole slide image classification.
Comput Methods Programs Biomed. 2024 Aug;253:108237. doi: 10.1016/j.cmpb.2024.108237. Epub 2024 May 23.
3
LESS: Label-efficient multi-scale learning for cytological whole slide image screening.
Med Image Anal. 2024 May;94:103109. doi: 10.1016/j.media.2024.103109. Epub 2024 Feb 20.
4
Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis.
IEEE Trans Cybern. 2020 Sep;50(9):3950-3962. doi: 10.1109/TCYB.2019.2935141. Epub 2019 Sep 2.
5
Learning binary and sparse permutation-invariant representations for fast and memory efficient whole slide image search.
Comput Biol Med. 2023 Aug;162:107026. doi: 10.1016/j.compbiomed.2023.107026. Epub 2023 May 22.
6
RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval.
Med Image Anal. 2023 Jan;83:102645. doi: 10.1016/j.media.2022.102645. Epub 2022 Oct 1.
7
An end-to-end breast tumour classification model using context-based patch modelling - A BiLSTM approach for image classification.
Comput Med Imaging Graph. 2021 Jan;87:101838. doi: 10.1016/j.compmedimag.2020.101838. Epub 2020 Dec 4.
8
Weakly supervised joint whole-slide segmentation and classification in prostate cancer.
Med Image Anal. 2023 Oct;89:102915. doi: 10.1016/j.media.2023.102915. Epub 2023 Aug 9.
9
Multi-scale representation attention based deep multiple instance learning for gigapixel whole slide image analysis.
Med Image Anal. 2023 Oct;89:102890. doi: 10.1016/j.media.2023.102890. Epub 2023 Jul 8.
10
Optimized JPEG 2000 Compression for Efficient Storage of Histopathological Whole-Slide Images.
J Pathol Inform. 2018 May 25;9:20. doi: 10.4103/jpi.jpi_69_17. eCollection 2018.

本文引用的文献

2
Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning.
Conf Comput Vis Pattern Recognit Workshops. 2021 Jun;2021:14318-14328. doi: 10.1109/CVPR46437.2021.01409. Epub 2021 Nov 13.
3
Data-efficient and weakly supervised computational pathology on whole-slide images.
Nat Biomed Eng. 2021 Jun;5(6):555-570. doi: 10.1038/s41551-020-00682-w. Epub 2021 Mar 1.
4
Deep neural network models for computational histopathology: A survey.
Med Image Anal. 2021 Jan;67:101813. doi: 10.1016/j.media.2020.101813. Epub 2020 Sep 25.
5
Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks.
Med Image Anal. 2020 Oct;65:101789. doi: 10.1016/j.media.2020.101789. Epub 2020 Jul 19.
6
Yottixel - An Image Search Engine for Large Archives of Histopathology Whole Slide Images.
Med Image Anal. 2020 Oct;65:101757. doi: 10.1016/j.media.2020.101757. Epub 2020 Jun 24.
7
Software-assisted decision support in digital histopathology.
J Pathol. 2020 Apr;250(5):685-692. doi: 10.1002/path.5388. Epub 2020 Feb 25.
8
Deep Learning for Whole Slide Image Analysis: An Overview.
Front Med (Lausanne). 2019 Nov 22;6:264. doi: 10.3389/fmed.2019.00264. eCollection 2019.
9
Bringing Open Data to Whole Slide Imaging.
Digit Pathol (2019). 2019 Apr;2019:3-10. doi: 10.1007/978-3-030-23937-4_1. Epub 2019 Jul 3.
10
RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification.
Med Image Anal. 2019 Dec;58:101549. doi: 10.1016/j.media.2019.101549. Epub 2019 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验