Suppr超能文献

MRI影像组学与预测模型在评估缺血性脑卒中预后中的应用——一项系统综述

MRI Radiomics and Predictive Models in Assessing Ischemic Stroke Outcome-A Systematic Review.

作者信息

Dragoș Hanna Maria, Stan Adina, Pintican Roxana, Feier Diana, Lebovici Andrei, Panaitescu Paul-Ștefan, Dina Constantin, Strilciuc Stefan, Muresanu Dafin F

机构信息

Department of Neurosciences, Iuliu Hațieganu University of Medicine and Pharmacy, No. 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania.

RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street, 400364 Cluj-Napoca, Romania.

出版信息

Diagnostics (Basel). 2023 Feb 23;13(5):857. doi: 10.3390/diagnostics13050857.

Abstract

Stroke is a leading cause of disability and mortality, resulting in substantial socio-economic burden for healthcare systems. With advances in artificial intelligence, visual image information can be processed into numerous quantitative features in an objective, repeatable and high-throughput fashion, in a process known as radiomics analysis (RA). Recently, investigators have attempted to apply RA to stroke neuroimaging in the hope of promoting personalized precision medicine. This review aimed to evaluate the role of RA as an adjuvant tool in the prognosis of disability after stroke. We conducted a systematic review following the PRISMA guidelines, searching PubMed and Embase using the keywords: 'magnetic resonance imaging (MRI)', 'radiomics', and 'stroke'. The PROBAST tool was used to assess the risk of bias. Radiomics quality score (RQS) was also applied to evaluate the methodological quality of radiomics studies. Of the 150 abstracts returned by electronic literature research, 6 studies fulfilled the inclusion criteria. Five studies evaluated predictive value for different predictive models (PMs). In all studies, the combined PMs consisting of clinical and radiomics features have achieved the best predictive performance compared to PMs based only on clinical or radiomics features, the results varying from an area under the ROC curve (AUC) of 0.80 (95% CI, 0.75-0.86) to an AUC of 0.92 (95% CI, 0.87-0.97). The median RQS of the included studies was 15, reflecting a moderate methodological quality. Assessing the risk of bias using PROBAST, potential high risk of bias in participants selection was identified. Our findings suggest that combined models integrating both clinical and advanced imaging variables seem to better predict the patients' disability outcome group (favorable outcome: modified Rankin scale (mRS) ≤ 2 and unfavorable outcome: mRS > 2) at three and six months after stroke. Although radiomics studies' findings are significant in research field, these results should be validated in multiple clinical settings in order to help clinicians to provide individual patients with optimal tailor-made treatment.

摘要

中风是导致残疾和死亡的主要原因,给医疗系统带来了巨大的社会经济负担。随着人工智能的发展,视觉图像信息可以以客观、可重复和高通量的方式被处理成众多定量特征,这一过程称为放射组学分析(RA)。最近,研究人员试图将RA应用于中风神经影像学,以期推动个性化精准医疗。本综述旨在评估RA作为辅助工具在中风后残疾预后中的作用。我们按照PRISMA指南进行了系统综述,使用关键词“磁共振成像(MRI)”、“放射组学”和“中风”在PubMed和Embase上进行检索。使用PROBAST工具评估偏倚风险。还应用放射组学质量评分(RQS)来评估放射组学研究的方法学质量。在电子文献检索返回的150篇摘要中,有6项研究符合纳入标准。5项研究评估了不同预测模型(PMs)的预测价值。在所有研究中,与仅基于临床或放射组学特征的PMs相比,由临床和放射组学特征组成的联合PMs具有最佳的预测性能,结果的受试者工作特征曲线(ROC)下面积(AUC)从0.80(95%CI,0.75 - 0.86)到0.92(95%CI,0.87 - 0.97)不等。纳入研究的RQS中位数为15,反映出中等的方法学质量。使用PROBAST评估偏倚风险时,发现参与者选择方面可能存在高偏倚风险。我们的研究结果表明,整合临床和先进成像变量的联合模型似乎能更好地预测中风后3个月和6个月时患者的残疾结局分组(良好结局:改良Rankin量表(mRS)≤2,不良结局:mRS>2)。尽管放射组学研究的结果在研究领域具有重要意义,但这些结果应在多个临床环境中进行验证,以帮助临床医生为个体患者提供最佳的量身定制治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c11/10000411/cc4cb1a2aaf6/diagnostics-13-00857-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验