Suppr超能文献

虚拟睡眠实验室——一种使用低成本可穿戴设备的心率变异性进行准确四阶段睡眠分期的新方法。

The Virtual Sleep Lab-A Novel Method for Accurate Four-Class Sleep Staging Using Heart-Rate Variability from Low-Cost Wearables.

机构信息

Laboratory for Sleep, Cognition and Consciousness Research, Department of Psychology and Centre for Cognitive Neuroscience Salzburg (CCNS), Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.

Institut Proschlaf, 5020 Salzburg, Austria.

出版信息

Sensors (Basel). 2023 Feb 21;23(5):2390. doi: 10.3390/s23052390.

Abstract

Sleep staging based on polysomnography (PSG) performed by human experts is the de facto "gold standard" for the objective measurement of sleep. PSG and manual sleep staging is, however, personnel-intensive and time-consuming and it is thus impractical to monitor a person's sleep architecture over extended periods. Here, we present a novel, low-cost, automatized, deep learning alternative to PSG sleep staging that provides a reliable epoch-by-epoch four-class sleep staging approach (Wake, Light [N1 + N2], Deep, REM) based solely on inter-beat-interval (IBI) data. Having trained a multi-resolution convolutional neural network (MCNN) on the IBIs of 8898 full-night manually sleep-staged recordings, we tested the MCNN on sleep classification using the IBIs of two low-cost (<EUR 100) consumer wearables: an optical heart rate sensor (VS) and a breast belt (H10), both produced by POLAR®. The overall classification accuracy reached levels comparable to expert inter-rater reliability for both devices (VS: 81%, κ = 0.69; H10: 80.3%, κ = 0.69). In addition, we used the H10 and recorded daily ECG data from 49 participants with sleep complaints over the course of a digital CBT-I-based sleep training program implemented in the App NUKKUAA™. As proof of principle, we classified the IBIs extracted from H10 using the MCNN over the course of the training program and captured sleep-related changes. At the end of the program, participants reported significant improvements in subjective sleep quality and sleep onset latency. Similarly, objective sleep onset latency showed a trend toward improvement. Weekly sleep onset latency, wake time during sleep, and total sleep time also correlated significantly with the subjective reports. The combination of state-of-the-art machine learning with suitable wearables allows continuous and accurate monitoring of sleep in naturalistic settings with profound implications for answering basic and clinical research questions.

摘要

基于多导睡眠图(PSG)由人类专家进行的睡眠分期是客观测量睡眠的事实上的“金标准”。然而,PSG 和手动睡眠分期需要大量的人力和时间,因此,在长时间内监测一个人的睡眠结构是不切实际的。在这里,我们提出了一种新的、低成本的、自动化的、基于深度学习的替代 PSG 睡眠分期的方法,该方法仅基于间期(IBI)数据提供可靠的逐epoch 四分类睡眠分期方法(觉醒、轻(N1+N2)、深、快速眼动(REM))。我们在 8898 个整夜手动睡眠分期记录的 IBI 上训练了一个多分辨率卷积神经网络(MCNN),然后使用两个低成本(<100 欧元)消费可穿戴设备的 IBI 对 MCNN 进行睡眠分类测试:一个光学心率传感器(VS)和一个胸罩带(H10),均由 POLAR®生产。两种设备的整体分类准确性均达到了与专家间可靠性相媲美的水平(VS:81%,κ=0.69;H10:80.3%,κ=0.69)。此外,我们使用 H10 并记录了 49 名有睡眠问题的参与者在 App NUKKUAA™中实施的基于数字认知行为疗法的睡眠训练计划过程中的日常 ECG 数据。作为原理验证,我们在训练计划期间使用 MCNN 对从 H10 提取的 IBI 进行分类,并捕捉与睡眠相关的变化。在计划结束时,参与者报告主观睡眠质量和入睡潜伏期有显著改善。同样,客观入睡潜伏期也有改善的趋势。每周入睡潜伏期、睡眠期间醒来时间和总睡眠时间与主观报告也显著相关。将最先进的机器学习与合适的可穿戴设备相结合,可以在自然环境中连续、准确地监测睡眠,这对回答基础和临床研究问题具有深远的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0242/10006886/330363df80be/sensors-23-02390-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验