Suppr超能文献

用于基于经验的神经计算的具有电阻式开关突触的自适应硬件。

A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing.

机构信息

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IUNET, Milano, 20133, Italy.

Infineon Technologies, Villach, Austria.

出版信息

Nat Commun. 2023 Mar 21;14(1):1565. doi: 10.1038/s41467-023-37097-5.

Abstract

Neurobiological systems continually interact with the surrounding environment to refine their behaviour toward the best possible reward. Achieving such learning by experience is one of the main challenges of artificial intelligence, but currently it is hindered by the lack of hardware capable of plastic adaptation. Here, we propose a bio-inspired recurrent neural network, mastered by a digital system on chip with resistive-switching synaptic arrays of memory devices, which exploits homeostatic Hebbian learning for improved efficiency. All the results are discussed experimentally and theoretically, proposing a conceptual framework for benchmarking the main outcomes in terms of accuracy and resilience. To test the proposed architecture for reinforcement learning tasks, we study the autonomous exploration of continually evolving environments and verify the results for the Mars rover navigation. We also show that, compared to conventional deep learning techniques, our in-memory hardware has the potential to achieve a significant boost in speed and power-saving.

摘要

神经生物系统不断与周围环境相互作用,以优化其行为,实现最佳的奖励。通过经验实现这种学习是人工智能的主要挑战之一,但目前受到缺乏能够进行塑性自适应的硬件的阻碍。在这里,我们提出了一种受生物启发的递归神经网络,由一个带有电阻式开关突触阵列的记忆器件的片上数字系统控制,它利用同型突触Hebbian 学习来提高效率。所有的结果都通过实验和理论进行了讨论,提出了一个概念框架,以便根据准确性和弹性来对主要结果进行基准测试。为了测试强化学习任务的提出的架构,我们研究了不断进化的环境的自主探索,并验证了火星车导航的结果。我们还表明,与传统的深度学习技术相比,我们的内存硬件具有在速度和节能方面实现显著提升的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18e5/10030830/92de22909e93/41467_2023_37097_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验