Suppr超能文献

睡眠医学中40年的活动记录仪及当前最先进的算法

40 years of actigraphy in sleep medicine and current state of the art algorithms.

作者信息

Patterson Matthew R, Nunes Adonay A S, Gerstel Dawid, Pilkar Rakesh, Guthrie Tyler, Neishabouri Ali, Guo Christine C

机构信息

ActiGraph LLC, 70 N Baylen St, Suite 400, Pensacola, FL, USA.

出版信息

NPJ Digit Med. 2023 Mar 24;6(1):51. doi: 10.1038/s41746-023-00802-1.

Abstract

For the last 40 years, actigraphy or wearable accelerometry has provided an objective, low-burden and ecologically valid approach to assess real-world sleep and circadian patterns, contributing valuable data to epidemiological and clinical insights on sleep and sleep disorders. The proper use of wearable technology in sleep research requires validated algorithms that can derive sleep outcomes from the sensor data. Since the publication of the first automated scoring algorithm by Webster in 1982, a variety of sleep algorithms have been developed and contributed to sleep research, including many recent ones that leverage machine learning and / or deep learning approaches. However, it remains unclear how these algorithms compare to each other on the same data set and if these modern data science approaches improve the analytical validity of sleep outcomes based on wrist-worn acceleration data. This work provides a systematic evaluation across 8 state-of-the-art sleep algorithms on a common sleep data set with polysomnography (PSG) as ground truth. Despite the inclusion of recently published complex algorithms, simple regression-based and heuristic algorithms demonstrated slightly superior performance in sleep-wake classification and sleep outcome estimation. The performance of complex machine learning and deep learning models seem to suffer from poor generalization. This independent and systematic analytical validation of sleep algorithms provides key evidence on the use of wearable digital health technologies for sleep research and care.

摘要

在过去40年里,活动记录仪或可穿戴式加速度计提供了一种客观、低负担且生态有效的方法来评估现实世界中的睡眠和昼夜节律模式,为有关睡眠及睡眠障碍的流行病学和临床见解贡献了宝贵数据。在睡眠研究中正确使用可穿戴技术需要经过验证的算法,以便从传感器数据中得出睡眠结果。自1982年韦伯斯特发表首个自动评分算法以来,已经开发了多种睡眠算法并为睡眠研究做出了贡献,包括许多最近利用机器学习和/或深度学习方法的算法。然而,尚不清楚这些算法在同一数据集上相互之间的比较情况,以及这些现代数据科学方法是否能提高基于手腕佩戴式加速度数据的睡眠结果的分析效度。这项工作在一个以多导睡眠图(PSG)作为金标准的常见睡眠数据集上,对8种最先进的睡眠算法进行了系统评估。尽管纳入了最近发表的复杂算法,但基于简单回归和启发式的算法在睡眠-觉醒分类和睡眠结果估计方面表现出略胜一筹的性能。复杂的机器学习和深度学习模型的性能似乎受到泛化能力差的影响。这种对睡眠算法的独立且系统的分析验证为可穿戴数字健康技术在睡眠研究和护理中的应用提供了关键证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b30/10039037/631a239022d4/41746_2023_802_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验