文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research.

作者信息

Lu Yue, Cheng Dongfang, Niu Baohua, Wang Xiuzhi, Wu Xiaxia, Wang Aiping

机构信息

Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China.

Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China.

出版信息

Pharmaceuticals (Basel). 2023 Mar 17;16(3):454. doi: 10.3390/ph16030454.


DOI:10.3390/ph16030454
PMID:36986553
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10058621/
Abstract

In recent years, biodegradable polymers have gained the attention of many researchers for their promising applications, especially in drug delivery, due to their good biocompatibility and designable degradation time. Poly (lactic-co-glycolic acid) (PLGA) is a biodegradable functional polymer made from the polymerization of lactic acid (LA) and glycolic acid (GA) and is widely used in pharmaceuticals and medical engineering materials because of its biocompatibility, non-toxicity, and good plasticity. The aim of this review is to illustrate the progress of research on PLGA in biomedical applications, as well as its shortcomings, to provide some assistance for its future research development.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/4f4eb4b3154c/pharmaceuticals-16-00454-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/8adf2bce1296/pharmaceuticals-16-00454-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/ea1eb26f5816/pharmaceuticals-16-00454-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/e3106db73cce/pharmaceuticals-16-00454-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/2ef68a9f1a79/pharmaceuticals-16-00454-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/93a3b0cbe52d/pharmaceuticals-16-00454-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/c6c6c89cfa69/pharmaceuticals-16-00454-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/d09f85a0e5c3/pharmaceuticals-16-00454-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/ce7c48b78065/pharmaceuticals-16-00454-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/ee9da3bef46b/pharmaceuticals-16-00454-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/797b83ec49b5/pharmaceuticals-16-00454-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/471af9bee940/pharmaceuticals-16-00454-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/4f4eb4b3154c/pharmaceuticals-16-00454-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/8adf2bce1296/pharmaceuticals-16-00454-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/ea1eb26f5816/pharmaceuticals-16-00454-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/e3106db73cce/pharmaceuticals-16-00454-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/2ef68a9f1a79/pharmaceuticals-16-00454-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/93a3b0cbe52d/pharmaceuticals-16-00454-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/c6c6c89cfa69/pharmaceuticals-16-00454-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/d09f85a0e5c3/pharmaceuticals-16-00454-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/ce7c48b78065/pharmaceuticals-16-00454-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/ee9da3bef46b/pharmaceuticals-16-00454-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/797b83ec49b5/pharmaceuticals-16-00454-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/471af9bee940/pharmaceuticals-16-00454-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c3d/10058621/4f4eb4b3154c/pharmaceuticals-16-00454-g012.jpg

相似文献

[1]
Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research.

Pharmaceuticals (Basel). 2023-3-17

[2]
Recent applications of PLGA based nanostructures in drug delivery.

Colloids Surf B Biointerfaces. 2017-7-28

[3]
Customizing poly(lactic-co-glycolic acid) particles for biomedical applications.

Acta Biomater. 2018-4-11

[4]
Redefining the importance of polylactide-co-glycolide acid (PLGA) in drug delivery.

Ann Pharm Fr. 2022-9

[5]
Progress in the drug encapsulation of poly(lactic--glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic--glycolic acid) conjugates for selective cancer treatment.

J Mater Chem B. 2022-6-8

[6]
Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid).

Int J Nanomedicine. 2013-11-7

[7]
Generational Biodegradable and Regenerative Polyphosphazene Polymers and their Blends with Poly (lactic-co-glycolic acid).

Prog Polym Sci. 2019-11

[8]
Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications.

J Biomed Nanotechnol. 2014-6

[9]
Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier.

Polymers (Basel). 2011-9-1

[10]
Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.

J Control Release. 1998-2-12

引用本文的文献

[1]
Phages and Control of -Associated Human, Animal, and Plant Diseases.

Microorganisms. 2025-8-11

[2]
Next-Generation Wound Healing Materials: Role of Biopolymers and Their Composites.

Polymers (Basel). 2025-8-19

[3]
Neuroregenerative and neuroprotective effects of bioengineered scaffolds in spinal cord injury: a systematic review of preclinical and early phase clinical studies.

Spinal Cord. 2025-8-23

[4]
Advanced Bioactive Polymers and Materials for Nerve Repair: Strategies and Mechanistic Insights.

J Funct Biomater. 2025-7-9

[5]
Tissue Regeneration of Radiation-Induced Skin Damages Using Protein/Polysaccharide-Based Bioengineered Scaffolds and Adipose-Derived Stem Cells: A Review.

Int J Mol Sci. 2025-7-4

[6]
A Review on Novel Formulations and Delivery Systems of Botanical Insecticides for Enhanced Efficacy.

Neotrop Entomol. 2025-7-10

[7]
Revolutionizing Diabetes Management Through Nanotechnology-Driven Smart Systems.

Pharmaceutics. 2025-6-13

[8]
Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering.

Gels. 2025-6-9

[9]
Bioactive Hydrogel Scaffolds Integrating Chitosan, Silk Fibroin, and Extract for Enhanced Cartilage Tissue Regeneration.

Polymers (Basel). 2025-5-20

[10]
Recent advances in the application of nanotechnology in joint arthroplasty: a narrative review.

Ann Jt. 2025-4-22

本文引用的文献

[1]
A single-dose Qβ VLP vaccine against S100A9 protein reduces atherosclerosis in a preclinical model.

Adv Ther (Weinh). 2022-10

[2]
Cell membrane-camouflaged PLGA biomimetic system for diverse biomedical application.

Drug Deliv. 2022-12

[3]
Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering.

Int J Mol Sci. 2022-5-23

[4]
In vitro-in vivo correlation of PLGA microspheres: Effect of polymer source variation and temperature.

J Control Release. 2022-7

[5]
Microfluidic assisted synthesis of PLGA drug delivery systems.

RSC Adv. 2019-1-15

[6]
Targeting COPD with PLGA-Based Nanoparticles: Current Status and Prospects.

Biomed Res Int. 2022-3-11

[7]
Development of Peptide Targeted PLGA-PEGylated Nanoparticles Loading Licochalcone-A for Ocular Inflammation.

Pharmaceutics. 2022-1-26

[8]
Naringin as Sustained Delivery Nanoparticles Ameliorates the Anti-inflammatory Activity in a Freund's Complete Adjuvant-Induced Arthritis Model.

ACS Omega. 2021-10-22

[9]
Chitosan-Coated PLGA Nanoparticles Encapsulating Triamcinolone Acetonide as a Potential Candidate for Sustained Ocular Drug Delivery.

Pharmaceutics. 2021-9-30

[10]
Pyroptosis-Induced Inflammation and Tissue Damage.

J Mol Biol. 2022-2-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索