Suppr超能文献

用于等离子体应用的金-二氧化硅杂化纳米颗粒:增加金覆盖率的合成方法比较研究。

Hybrid gold-silica nanoparticles for plasmonic applications: A comparison study of synthesis methods for increasing gold coverage.

作者信息

Trihan Romain, Bogucki Oskar, Kozlowska Anna, Ihle Martin, Ziesche Steffen, Fetliński Bartosz, Janaszek Bartosz, Kieliszczyk Marcin, Kaczkan Marcin, Rossignol Fabrice, Aimable Anne

机构信息

Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France.

Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland.

出版信息

Heliyon. 2023 May 6;9(5):e15977. doi: 10.1016/j.heliyon.2023.e15977. eCollection 2023 May.

Abstract

The current work focuses on the synthesis of hybrid nanoparticles (NPs) made of a silica core (Si NPs) coated with discrete gold nanoparticles (Au NPs), which exhibit localized surface plasmon resonance (LSPR) properties. This plasmonic effect is directly related to the nanoparticles size and arrangement. In this paper, we explore a wide range of size for the silica cores (80, 150, 400, and 600 nm) and for the gold NPs (8, 10, and 30 nm). Some rational comparison between different functionalization techniques and different synthesis methods for the Au NPs are proposed, related to the optical properties and colloidal stability in time. An optimized, robust and reliable synthesis route is established, which improves the gold density and homogeneity. The performances of these hybrid nanoparticles are evaluated in order to be used in the shape of a dense layer for pollutant detection in gas or liquids, and find numerous applications as a cheap and new optical device.

摘要

当前的工作聚焦于由包覆离散金纳米颗粒(Au NPs)的二氧化硅核(Si NPs)构成的杂化纳米颗粒(NPs)的合成,这些杂化纳米颗粒展现出局域表面等离子体共振(LSPR)特性。这种等离子体效应与纳米颗粒的尺寸和排列直接相关。在本文中,我们探究了二氧化硅核(80、150、400和600纳米)以及金纳米颗粒(8、10和30纳米)的多种尺寸。针对金纳米颗粒,提出了不同功能化技术和不同合成方法之间的一些合理比较,这些比较与光学性质以及随时间的胶体稳定性有关。建立了一种优化、稳健且可靠的合成路线,该路线提高了金的密度和均匀性。对这些杂化纳米颗粒的性能进行了评估,以便将其用于致密层形状,用于气体或液体中的污染物检测,并作为一种廉价的新型光学器件找到众多应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/384e/10200860/9eadf93de37e/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验