Suppr超能文献

利用MobileNet模型从胸部X光图像中检测肺炎

Detection of Pneumonia from Chest X-ray Images Utilizing MobileNet Model.

作者信息

Reshan Mana Saleh Al, Gill Kanwarpartap Singh, Anand Vatsala, Gupta Sheifali, Alshahrani Hani, Sulaiman Adel, Shaikh Asadullah

机构信息

Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia.

Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India.

出版信息

Healthcare (Basel). 2023 May 26;11(11):1561. doi: 10.3390/healthcare11111561.

Abstract

Pneumonia has been directly responsible for a huge number of deaths all across the globe. Pneumonia shares visual features with other respiratory diseases, such as tuberculosis, which can make it difficult to distinguish between them. Moreover, there is significant variability in the way chest X-ray images are acquired and processed, which can impact the quality and consistency of the images. This can make it challenging to develop robust algorithms that can accurately identify pneumonia in all types of images. Hence, there is a need to develop robust, data-driven algorithms that are trained on large, high-quality datasets and validated using a range of imaging techniques and expert radiological analysis. In this research, a deep-learning-based model is demonstrated for differentiating between normal and severe cases of pneumonia. This complete proposed system has a total of eight pre-trained models, namely, ResNet50, ResNet152V2, DenseNet121, DenseNet201, Xception, VGG16, EfficientNet, and MobileNet. These eight pre-trained models were simulated on two datasets having 5856 images and 112,120 images of chest X-rays. The best accuracy is obtained on the MobileNet model with values of 94.23% and 93.75% on two different datasets. Key hyperparameters including batch sizes, number of epochs, and different optimizers have all been considered during comparative interpretation of these models to determine the most appropriate model.

摘要

肺炎在全球范围内直接导致了大量死亡。肺炎与其他呼吸道疾病(如肺结核)具有相似的视觉特征,这使得它们难以区分。此外,胸部X光图像的采集和处理方式存在很大差异,这会影响图像的质量和一致性。这使得开发能够准确识别所有类型图像中肺炎的强大算法具有挑战性。因此,需要开发强大的数据驱动算法,这些算法在大型高质量数据集上进行训练,并使用一系列成像技术和专家放射学分析进行验证。在这项研究中,展示了一种基于深度学习的模型,用于区分正常和重症肺炎病例。这个完整的提议系统共有八个预训练模型,即ResNet50、ResNet152V2、DenseNet121、DenseNet201、Xception、VGG16、EfficientNet和MobileNet。这八个预训练模型在两个包含5856张图像和112120张胸部X光图像的数据集上进行了模拟。在MobileNet模型上获得了最佳准确率,在两个不同数据集上的值分别为94.23%和93.75%。在对这些模型进行比较解读时,考虑了包括批量大小、轮数和不同优化器在内的关键超参数,以确定最合适的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e22/10252226/88f53db7b145/healthcare-11-01561-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验