Suppr超能文献

基于深度学习方法的图像增强技术在使用胸部X光图像自动诊断新冠病毒特征中的应用

Image enhancement techniques on deep learning approaches for automated diagnosis of COVID-19 features using CXR images.

作者信息

Sharma Ajay, Mishra Pramod Kumar

机构信息

Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005 India.

出版信息

Multimed Tools Appl. 2022;81(29):42649-42690. doi: 10.1007/s11042-022-13486-8. Epub 2022 Aug 1.

Abstract

The outbreak of novel coronavirus (COVID-19) disease has infected more than 135.6 million people globally. For its early diagnosis, researchers consider chest X-ray examinations as a standard screening technique in addition to RT-PCR test. Majority of research work till date focused only on application of deep learning approaches that is relevant but lacking in better pre-processing of CXR images. Towards this direction, this study aims to explore cumulative effects of image denoising and enhancement approaches on the performance of deep learning approaches. Regarding pre-processing, suitable methods for X-ray images, Histogram equalization, CLAHE and gamma correction have been tested individually and along with adaptive median filter, median filter, total variation filter and gaussian denoising filters. Proposed study compared eleven combinations in exploration of most coherent approach in greedy manner. For more robust analysis, we compared ten CNN architectures for performance evaluation with and without enhancement approaches. These models are InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2, Vgg19, NASNetMobile, ResNet101, DenseNet121, DenseNet169, DenseNet201. These models are trained in 4-way (COVID-19 pneumonia vs Viral vs Bacterial pneumonia vs Normal) and 3-way classification scenario (COVID-19 vs Pneumonia vs Normal) on two benchmark datasets. The proposed methodology determines with TVF + Gamma, models achieve higher classification accuracy and sensitivity. In 4-way classification MobileNet with TVF + Gamma achieves top accuracy of 93.25% with 1.91% improvement in accuracy score, COVID-19 sensitivity of 98.72% and F1-score of 92.14%. In 3-way classification our DenseNet201 with TVF + Gamma gains accuracy of 91.10% with improvement of 1.47%, COVID-19 sensitivity of 100% and F1-score of 91.09%. Proposed study concludes that deep learning modes with gamma correction and TVF + Gamma has superior performance compared to state-of-the-art models. This not only minimizes overlapping between COVID-19 and virus pneumonia but advantageous in time required to converge best possible results.

摘要

新型冠状病毒(COVID-19)疾病的爆发已在全球感染了超过1.356亿人。为了早期诊断,研究人员将胸部X光检查视为除逆转录聚合酶链反应(RT-PCR)检测之外的标准筛查技术。迄今为止,大多数研究工作仅专注于深度学习方法的应用,这是相关的,但在胸部X光(CXR)图像的更好预处理方面有所欠缺。朝着这个方向,本研究旨在探索图像去噪和增强方法对深度学习方法性能的累积影响。关于预处理,已分别测试了适用于X光图像的方法,即直方图均衡化、对比度受限自适应直方图均衡化(CLAHE)和伽马校正,并与自适应中值滤波器、中值滤波器、全变差滤波器和高斯去噪滤波器一起进行了测试。本研究以贪婪的方式比较了十一种组合,以探索最连贯的方法。为了进行更稳健的分析,我们比较了十种卷积神经网络(CNN)架构在有无增强方法情况下的性能评估。这些模型包括InceptionV3、InceptionResNetV2、MobileNet、MobileNetV2、Vgg19、NASNetMobile、ResNet101、DenseNet121、DenseNet169和DenseNet201。这些模型在两个基准数据集上进行了四路(COVID-19肺炎与病毒性肺炎与细菌性肺炎与正常)和三路分类场景(COVID-19与肺炎与正常)的训练。所提出的方法确定,使用全变差滤波器(TVF)+伽马校正时,模型可实现更高的分类准确率和灵敏度。在四路分类中,使用TVF+伽马校正的MobileNet实现了93.25%的最高准确率,准确率得分提高了1.91%,COVID-19灵敏度为98.72%,F1分数为92.14%。在三路分类中,我们使用TVF+伽马校正的DenseNet201的准确率为91.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a551/9340712/255bf3f54745/11042_2022_13486_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验