Huang Caiping, Sede Ana Rocío, Elvira-González Laura, Yan Yan, Rodriguez Miguel Eduardo, Mutterer Jérôme, Boutant Emmanuel, Shan Libo, Heinlein Manfred
Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France.
Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77843, USA.
Plant Cell. 2023 Sep 27;35(10):3845-3869. doi: 10.1093/plcell/koad176.
Emerging evidence indicates that in addition to its well-recognized functions in antiviral RNA silencing, dsRNA elicits pattern-triggered immunity (PTI), likely contributing to plant resistance against virus infections. However, compared to bacterial and fungal elicitor-mediated PTI, the mode-of-action and signaling pathway of dsRNA-induced defense remain poorly characterized. Here, using multicolor in vivo imaging, analysis of GFP mobility, callose staining, and plasmodesmal marker lines in Arabidopsis thaliana and Nicotiana benthamiana, we show that dsRNA-induced PTI restricts the progression of virus infection by triggering callose deposition at plasmodesmata, thereby likely limiting the macromolecular transport through these cell-to-cell communication channels. The plasma membrane-resident SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1, the BOTRYTIS INDUCED KINASE1/AVRPPHB SUSCEPTIBLE1-LIKE KINASE1 kinase module, PLASMODESMATA-LOCATED PROTEINs 1/2/3, as well as CALMODULIN-LIKE 41 and Ca2+ signals are involved in the dsRNA-induced signaling leading to callose deposition at plasmodesmata and antiviral defense. Unlike the classical bacterial elicitor flagellin, dsRNA does not trigger a detectable reactive oxygen species (ROS) burst, substantiating the idea that different microbial patterns trigger partially shared immune signaling frameworks with distinct features. Likely as a counter strategy, viral movement proteins from different viruses suppress the dsRNA-induced host response leading to callose deposition to achieve infection. Thus, our data support a model in which plant immune signaling constrains virus movement by inducing callose deposition at plasmodesmata and reveals how viruses counteract this layer of immunity.
新出现的证据表明,双链RNA(dsRNA)除了在抗病毒RNA沉默中具有公认的功能外,还能引发模式触发免疫(PTI),这可能有助于植物抵抗病毒感染。然而,与细菌和真菌激发子介导的PTI相比,dsRNA诱导的防御作用方式和信号通路仍不清楚。在这里,我们利用多色体内成像、绿色荧光蛋白(GFP)流动性分析、胼胝质染色以及拟南芥和本氏烟草中的胞间连丝标记系,表明dsRNA诱导的PTI通过在胞间连丝处触发胼胝质沉积来限制病毒感染的进程,从而可能限制通过这些细胞间通讯通道的大分子运输。位于质膜的体细胞胚胎发生受体样激酶1、葡萄孢诱导激酶1/avrpphb敏感1样激酶1激酶模块、胞间连丝定位蛋白1/2/3,以及类钙调蛋白41和Ca2+信号参与了dsRNA诱导的信号传导,导致胼胝质在胞间连丝处沉积和抗病毒防御。与经典的细菌激发子鞭毛蛋白不同,dsRNA不会触发可检测到的活性氧(ROS)爆发,这证实了不同的微生物模式触发了具有不同特征的部分共享免疫信号框架的观点。作为一种应对策略,来自不同病毒的病毒运动蛋白抑制dsRNA诱导的宿主反应,导致胼胝质沉积以实现感染。因此,我们的数据支持了一个模型,即植物免疫信号通过在胞间连丝处诱导胼胝质沉积来限制病毒运动,并揭示了病毒如何对抗这一层免疫。