Azevedo Tiago, Bethlehem Richard A I, Whiteside David J, Swaddiwudhipong Nol, Rowe James B, Lió Pietro, Rittman Timothy
Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.
Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK.
Commun Med (Lond). 2023 Jul 20;3(1):100. doi: 10.1038/s43856-023-00313-w.
Identifying prediagnostic neurodegenerative disease is a critical issue in neurodegenerative disease research, and Alzheimer's disease (AD) in particular, to identify populations suitable for preventive and early disease-modifying trials. Evidence from genetic and other studies suggests the neurodegeneration of Alzheimer's disease measured by brain atrophy starts many years before diagnosis, but it is unclear whether these changes can be used to reliably detect prediagnostic sporadic disease.
We trained a Bayesian machine learning neural network model to generate a neuroimaging phenotype and AD score representing the probability of AD using structural MRI data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) Cohort (cut-off 0.5, AUC 0.92, PPV 0.90, NPV 0.93). We go on to validate the model in an independent real-world dataset of the National Alzheimer's Coordinating Centre (AUC 0.74, PPV 0.65, NPV 0.80) and demonstrate the correlation of the AD-score with cognitive scores in those with an AD-score above 0.5. We then apply the model to a healthy population in the UK Biobank study to identify a cohort at risk for Alzheimer's disease.
We show that the cohort with a neuroimaging Alzheimer's phenotype has a cognitive profile in keeping with Alzheimer's disease, with strong evidence for poorer fluid intelligence, and some evidence of poorer numeric memory, reaction time, working memory, and prospective memory. We found some evidence in the AD-score positive cohort for modifiable risk factors of hypertension and smoking.
This approach demonstrates the feasibility of using AI methods to identify a potentially prediagnostic population at high risk for developing sporadic Alzheimer's disease.
在神经退行性疾病研究中,识别诊断前神经退行性疾病是一个关键问题,尤其是在阿尔茨海默病(AD)研究中,以确定适合进行预防性和早期疾病修饰试验的人群。遗传和其他研究的证据表明,通过脑萎缩测量的阿尔茨海默病神经退行性变在诊断前许多年就已开始,但尚不清楚这些变化是否可用于可靠地检测诊断前散发性疾病。
我们训练了一个贝叶斯机器学习神经网络模型,以使用阿尔茨海默病神经影像倡议(ADNI)队列中的结构MRI数据生成代表AD概率的神经影像表型和AD评分(临界值0.5,AUC 0.92,PPV 0.90,NPV 0.93)。我们接着在国家阿尔茨海默病协调中心的一个独立真实世界数据集中验证该模型(AUC 0.74,PPV 0.65,NPV 0.80),并证明AD评分高于0.5者的AD评分与认知评分之间的相关性。然后,我们将该模型应用于英国生物银行研究中的健康人群,以确定有患阿尔茨海默病风险的队列。
我们表明,具有神经影像阿尔茨海默病表型的队列具有与阿尔茨海默病一致的认知特征,有充分证据表明其流体智力较差,并有一些证据表明其数字记忆、反应时间、工作记忆和前瞻性记忆较差。我们在AD评分阳性队列中发现了一些关于高血压和吸烟等可改变风险因素的证据。
这种方法证明了使用人工智能方法识别有发展为散发性阿尔茨海默病高风险的潜在诊断前人群的可行性。