Institute of Applied Informatics and Formal Description Methods, Karlsruhe Institute of Technology, 76133 Karlsruhe, Germany.
Independent Researcher, Tehran 009821, Iran.
Sensors (Basel). 2023 Jul 21;23(14):6571. doi: 10.3390/s23146571.
An electronic health record (EHR) is a vital high-dimensional part of medical concepts. Discovering implicit correlations in the information of this data set and the research and informative aspects can improve the treatment and management process. The challenge of concern is the data sources' limitations in finding a stable model to relate medical concepts and use these existing connections. This paper presents Patient Forest, a novel end-to-end approach for learning patient representations from tree-structured data for readmission and mortality prediction tasks. By leveraging statistical features, the proposed model is able to provide an accurate and reliable classifier for predicting readmission and mortality. Experiments on MIMIC-III and eICU datasets demonstrate Patient Forest outperforms existing machine learning models, especially when the training data are limited. Additionally, a qualitative evaluation of Patient Forest is conducted by visualising the learnt representations in 2D space using the t-SNE, which further confirms the effectiveness of the proposed model in learning EHR representations.
电子健康记录(EHR)是医学概念的一个重要的高维部分。发现该数据集信息中的隐含相关性,以及研究和信息方面的相关性,可以改善治疗和管理过程。关注的挑战是数据源在寻找一个稳定的模型来关联医学概念和利用这些现有联系方面的局限性。本文提出了 Patient Forest,这是一种从树结构数据中学习患者表示的端到端方法,用于再入院和死亡率预测任务。通过利用统计特征,所提出的模型能够提供一个准确可靠的分类器,用于预测再入院和死亡率。在 MIMIC-III 和 eICU 数据集上的实验表明,Patient Forest 优于现有的机器学习模型,特别是在训练数据有限的情况下。此外,通过使用 t-SNE 在 2D 空间中可视化学习到的表示,对 Patient Forest 进行了定性评估,这进一步证实了所提出的模型在学习 EHR 表示方面的有效性。