Suppr超能文献

一种用于可视化和预测马来西亚新冠肺炎疫情的网络分析与支持向量回归方法。

A network analysis and support vector regression approaches for visualising and predicting the COVID-19 outbreak in Malaysia.

作者信息

Sharin Siti Nurhidayah, Radzali Mohamad Khairil, Sani Muhamad Shirwan Abdullah

机构信息

Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

出版信息

Healthc Anal (N Y). 2022 Nov;2:100080. doi: 10.1016/j.health.2022.100080. Epub 2022 Jul 19.

Abstract

This study aims to (1) correlate and visualise the Coronavirus disease 19 (COVID-19) pandemic spread via Spearman rank coefficients of network analysis (NA) and (2) predict the cumulative number of COVID-19 confirmed and death cases via support vector regression (SVR) based on COVID-19 dataset in Malaysia between July 2020 to June 2021. The NA indicated increasing connectivity between different states throughout the time frame, revealing the most complex network of COVID-19 transmission in the second quarter of 2021. The SVR model predicted future COVID-19 cases and deaths in Malaysia in the second half of 2021. The study demonstrated that the NA and SVR could provide relatively simple yet valuable artificial intelligence techniques for visualising the degree of connectivity and predicting pandemic risk based on confirmed COVID-19 cases and deaths. The Malaysian health authorities used the NA and SVR model results for preventive measures in highly populated states.

摘要

本研究旨在

(1)通过网络分析(NA)的斯皮尔曼等级系数关联并可视化2019冠状病毒病(COVID-19)大流行的传播情况;(2)基于2020年7月至2021年6月马来西亚的COVID-19数据集,通过支持向量回归(SVR)预测COVID-19确诊病例和死亡病例的累计数量。网络分析表明,在整个时间范围内,不同州之间的连通性不断增加,这揭示了2021年第二季度COVID-19传播最为复杂的网络。支持向量回归模型预测了2021年下半年马来西亚的COVID-19病例和死亡情况。该研究表明,网络分析和支持向量回归可以提供相对简单但有价值的人工智能技术,用于可视化连通程度,并根据COVID-19确诊病例和死亡情况预测大流行风险。马来西亚卫生当局将网络分析和支持向量回归模型的结果用于人口密集州的预防措施。

相似文献

5
COVID-19 Outbreak in Malaysia.马来西亚的新冠疫情爆发。
Osong Public Health Res Perspect. 2020 Jun;11(3):93-100. doi: 10.24171/j.phrp.2020.11.3.08.
6
Time series predicting of COVID-19 based on deep learning.基于深度学习的新型冠状病毒肺炎时间序列预测
Neurocomputing (Amst). 2022 Jan 11;468:335-344. doi: 10.1016/j.neucom.2021.10.035. Epub 2021 Oct 19.

本文引用的文献

1
7
Data science approaches to confronting the COVID-19 pandemic: a narrative review.数据科学方法应对 COVID-19 大流行:叙事性综述。
Philos Trans A Math Phys Eng Sci. 2022 Jan 10;380(2214):20210127. doi: 10.1098/rsta.2021.0127. Epub 2021 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验