Sharin Siti Nurhidayah, Radzali Mohamad Khairil, Sani Muhamad Shirwan Abdullah
Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
Healthc Anal (N Y). 2022 Nov;2:100080. doi: 10.1016/j.health.2022.100080. Epub 2022 Jul 19.
This study aims to (1) correlate and visualise the Coronavirus disease 19 (COVID-19) pandemic spread via Spearman rank coefficients of network analysis (NA) and (2) predict the cumulative number of COVID-19 confirmed and death cases via support vector regression (SVR) based on COVID-19 dataset in Malaysia between July 2020 to June 2021. The NA indicated increasing connectivity between different states throughout the time frame, revealing the most complex network of COVID-19 transmission in the second quarter of 2021. The SVR model predicted future COVID-19 cases and deaths in Malaysia in the second half of 2021. The study demonstrated that the NA and SVR could provide relatively simple yet valuable artificial intelligence techniques for visualising the degree of connectivity and predicting pandemic risk based on confirmed COVID-19 cases and deaths. The Malaysian health authorities used the NA and SVR model results for preventive measures in highly populated states.
(1)通过网络分析(NA)的斯皮尔曼等级系数关联并可视化2019冠状病毒病(COVID-19)大流行的传播情况;(2)基于2020年7月至2021年6月马来西亚的COVID-19数据集,通过支持向量回归(SVR)预测COVID-19确诊病例和死亡病例的累计数量。网络分析表明,在整个时间范围内,不同州之间的连通性不断增加,这揭示了2021年第二季度COVID-19传播最为复杂的网络。支持向量回归模型预测了2021年下半年马来西亚的COVID-19病例和死亡情况。该研究表明,网络分析和支持向量回归可以提供相对简单但有价值的人工智能技术,用于可视化连通程度,并根据COVID-19确诊病例和死亡情况预测大流行风险。马来西亚卫生当局将网络分析和支持向量回归模型的结果用于人口密集州的预防措施。