Suppr超能文献

用于小肝脏肿瘤检测与分割的粗细融合网络:一项真实世界研究

A Coarse-to-Fine Fusion Network for Small Liver Tumor Detection and Segmentation: A Real-World Study.

作者信息

Wu Shu, Yu Hang, Li Cuiping, Zheng Rencheng, Xia Xueqin, Wang Chengyan, Wang He

机构信息

Zhiyu Software Information Co., Ltd., Shanghai 200030, China.

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.

出版信息

Diagnostics (Basel). 2023 Jul 27;13(15):2504. doi: 10.3390/diagnostics13152504.

Abstract

Liver tumor semantic segmentation is a crucial task in medical image analysis that requires multiple MRI modalities. This paper proposes a novel coarse-to-fine fusion segmentation approach to detect and segment small liver tumors of various sizes. To enhance the segmentation accuracy of small liver tumors, the method incorporates a detection module and a CSR (convolution-SE-residual) module, which includes a convolution block, an SE (squeeze and excitation) module, and a residual module for fine segmentation. The proposed method demonstrates superior performance compared to conventional single-stage end-to-end networks. A private liver MRI dataset comprising 218 patients with a total of 3605 tumors, including 3273 tumors smaller than 3.0 cm, were collected for the proposed method. There are five types of liver tumors identified in this dataset: hepatocellular carcinoma (HCC); metastases of the liver; cholangiocarcinoma (ICC); hepatic cyst; and liver hemangioma. The results indicate that the proposed method outperforms the single segmentation networks 3D UNet and nnU-Net as well as the fusion networks of 3D UNet and nnU-Net with nnDetection. The proposed architecture was evaluated on a test set of 44 images, with an average Dice similarity coefficient (DSC) and recall of 86.9% and 86.7%, respectively, which is a 1% improvement compared to the comparison method. More importantly, compared to existing methods, our proposed approach demonstrates state-of-the-art performance in segmenting small objects with sizes smaller than 10 mm, achieving a Dice score of 85.3% and a malignancy detection rate of 87.5%.

摘要

肝脏肿瘤语义分割是医学图像分析中的一项关键任务,需要多种磁共振成像(MRI)模态。本文提出了一种新颖的从粗到精的融合分割方法,用于检测和分割各种大小的小肝脏肿瘤。为了提高小肝脏肿瘤的分割精度,该方法结合了一个检测模块和一个CSR(卷积-挤压与激励-残差)模块,该模块包括一个卷积块、一个SE(挤压与激励)模块和一个用于精细分割的残差模块。与传统的单阶段端到端网络相比,该方法表现出卓越的性能。我们为该方法收集了一个包含218名患者、共3605个肿瘤的肝脏MRI私人数据集,其中包括3273个小于3.0厘米的肿瘤。该数据集中识别出五种类型的肝脏肿瘤:肝细胞癌(HCC);肝转移瘤;胆管癌(ICC);肝囊肿;以及肝血管瘤。结果表明,该方法优于单分割网络3D UNet和nnU-Net,以及3D UNet和nnU-Net与nnDetection的融合网络。所提出的架构在一个由44幅图像组成的测试集上进行了评估,平均骰子相似系数(DSC)和召回率分别为86.9%和86.7%,与比较方法相比提高了1%。更重要的是,与现有方法相比,我们提出的方法在分割尺寸小于10毫米的小物体方面表现出了领先的性能,获得了85.3%的骰子分数和87.5%的恶性肿瘤检测率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/573c/10417427/ca70636024a4/diagnostics-13-02504-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验