Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Curr Opin Genet Dev. 2023 Oct;82:102097. doi: 10.1016/j.gde.2023.102097. Epub 2023 Aug 11.
In vitro stem cell-derived embryo and organ models, termed embryoids and organoids, respectively, provide promising experimental tools to study physiological and pathological processes in mammalian development and organ formation. Most of current embryoid and organoid systems are developed using conventional three-dimensional cultures that lack controls of spatiotemporal extracellular signals. Microfluidics, an established technology for quantitative controls and quantifications of dynamic chemical and physical environments, has recently been utilized for developing next-generation embryoids and organoids in a controllable and reproducible manner. In this review, we summarize recent progress in constructing microfluidics-based embryoids and organoids. Development of these models demonstrates the successful applications of microfluidics in establishing morphogen gradients, accelerating medium transport, exerting mechanical forces, facilitating tissue coculture studies, and improving assay throughput, thus supporting using microfluidics for building next-generation embryoids and organoids for fundamental and translational research.
体外干细胞衍生的胚胎和器官模型,分别称为类胚胎和类器官,为研究哺乳动物发育和器官形成过程中的生理和病理过程提供了有前途的实验工具。目前大多数类胚胎和类器官系统都是使用缺乏时空细胞外信号控制的传统三维培养方法开发的。微流控技术是一种用于定量控制和量化动态化学和物理环境的成熟技术,最近已被用于以可控和可重复的方式开发新一代类胚胎和类器官。在这篇综述中,我们总结了构建基于微流控的类胚胎和类器官的最新进展。这些模型的发展证明了微流控在建立形态发生梯度、加速培养基传输、施加机械力、促进组织共培养研究以及提高检测通量方面的成功应用,从而支持使用微流控来构建用于基础和转化研究的新一代类胚胎和类器官。