Suppr超能文献

蛋白质的神经电位可外推至训练数据之外。

Neural potentials of proteins extrapolate beyond training data.

机构信息

Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.

Department of Chemistry, Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, USA.

出版信息

J Chem Phys. 2023 Aug 28;159(8). doi: 10.1063/5.0147240.

Abstract

We evaluate neural network (NN) coarse-grained (CG) force fields compared to traditional CG molecular mechanics force fields. We conclude that NN force fields are able to extrapolate and sample from unseen regions of the free energy surface when trained with limited data. Our results come from 88 NN force fields trained on different combinations of clustered free energy surfaces from four protein mapped trajectories. We used a statistical measure named total variation similarity to assess the agreement between reference free energy surfaces from mapped atomistic simulations and CG simulations from trained NN force fields. Our conclusions support the hypothesis that NN CG force fields trained with samples from one region of the proteins' free energy surface can, indeed, extrapolate to unseen regions. Additionally, the force matching error was found to only be weakly correlated with a force field's ability to reconstruct the correct free energy surface.

摘要

我们评估了神经网络(NN)粗粒(CG)力场与传统 CG 分子力学力场。我们得出结论,当用有限的数据进行训练时,神经网络力场能够从自由能表面的未见区域外推和采样。我们的结果来自于 88 个基于四种映射轨迹的蛋白质簇状自由能表面的不同组合训练的神经网络力场。我们使用了一种名为总变分相似度的统计度量来评估映射原子模拟的参考自由能表面与从训练的神经网络力场的 CG 模拟之间的一致性。我们的结论支持了这样一种假设,即从蛋白质自由能表面的一个区域采样训练的 NN CG 力场确实可以外推到未见区域。此外,发现力匹配误差与力场重建正确自由能表面的能力仅呈弱相关。

相似文献

8
Machine Learning of Coarse-Grained Molecular Dynamics Force Fields.粗粒度分子动力学力场的机器学习
ACS Cent Sci. 2019 May 22;5(5):755-767. doi: 10.1021/acscentsci.8b00913. Epub 2019 Apr 15.
10
Flow-Matching: Efficient Coarse-Graining of Molecular Dynamics without Forces.流匹配:无力的分子动力学高效粗粒化。
J Chem Theory Comput. 2023 Feb 14;19(3):942-952. doi: 10.1021/acs.jctc.3c00016. Epub 2023 Jan 20.

本文引用的文献

2
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics.统计最优力聚合在粗粒化分子动力学中的应用。
J Phys Chem Lett. 2023 May 4;14(17):3970-3979. doi: 10.1021/acs.jpclett.3c00444. Epub 2023 Apr 20.
3
4
Flow-Matching: Efficient Coarse-Graining of Molecular Dynamics without Forces.流匹配:无力的分子动力学高效粗粒化。
J Chem Theory Comput. 2023 Feb 14;19(3):942-952. doi: 10.1021/acs.jctc.3c00016. Epub 2023 Jan 20.
5
Bottom-up Coarse-Graining: Principles and Perspectives.自底向上粗粒化:原理与展望。
J Chem Theory Comput. 2022 Oct 11;18(10):5759-5791. doi: 10.1021/acs.jctc.2c00643. Epub 2022 Sep 7.
10
Time-Lagged Independent Component Analysis of Random Walks and Protein Dynamics.随机漫步和蛋白质动力学的时滞独立成分分析。
J Chem Theory Comput. 2021 Sep 14;17(9):5766-5776. doi: 10.1021/acs.jctc.1c00273. Epub 2021 Aug 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验