Suppr超能文献

基于定量系统的抗菌药物耐药性进化预测。

Quantitative systems-based prediction of antimicrobial resistance evolution.

机构信息

Department of Physics, University of Alberta, Edmonton, AB, T6G-2E1, Canada.

Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G-2E9, Canada.

出版信息

NPJ Syst Biol Appl. 2023 Sep 7;9(1):40. doi: 10.1038/s41540-023-00304-6.

Abstract

Predicting evolution is a fundamental problem in biology with practical implications for treating antimicrobial resistance, which is a complex system-level phenomenon. In this perspective article, we explore the limits of predicting antimicrobial resistance evolution, quantitatively define the predictability and repeatability of microevolutionary processes, and speculate on how these quantities vary across temporal, biological, and complexity scales. The opportunities and challenges for predicting antimicrobial resistance in the context of systems biology are also discussed. Based on recent research, we conclude that the evolution of antimicrobial resistance can be predicted using a systems biology approach integrating quantitative models with multiscale data from microbial evolution experiments.

摘要

预测进化是生物学中的一个基本问题,对于治疗抗菌药物耐药性具有实际意义,而后者是一种复杂的系统层面现象。在这篇观点文章中,我们探讨了预测抗菌药物耐药性进化的局限性,定量定义了微观进化过程的可预测性和可重复性,并推测了这些数量在时间、生物学和复杂性尺度上的变化。我们还讨论了在系统生物学背景下预测抗菌药物耐药性的机遇和挑战。基于最近的研究,我们得出结论,使用系统生物学方法可以预测抗菌药物耐药性的进化,该方法将定量模型与微生物进化实验的多尺度数据相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d75/10485028/052f7d4a63e7/41540_2023_304_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验