Suppr超能文献

乳酸约翰逊氏菌衍生醋酸向丁酸盐的转化受阻介导铜诱导猪模型上皮屏障损伤。

Blocked conversion of Lactobacillus johnsonii derived acetate to butyrate mediates copper-induced epithelial barrier damage in a pig model.

机构信息

State Key Laboratory of Animal Nutrition, Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.

State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.

出版信息

Microbiome. 2023 Sep 30;11(1):218. doi: 10.1186/s40168-023-01655-2.

Abstract

BACKGROUND

High-copper diets have been widely used to promote growth performance of pigs, but excess copper supplementation can also produce negative effects on ecosystem stability and organism health. High-copper supplementation can damage the intestinal barrier and disturb the gut microbiome community. However, the specific relationship between high-copper-induced intestinal damage and gut microbiota or its metabolites is unclear.

OBJECTIVE

Using fecal microbiota transplantation and metagenomic sequencing, responses of colonic microbiota to a high-copper diet was profiled. In addition, via comparison of specific bacteria and its metabolites rescue, we investigated a network of bacteria-metabolite interactions involving conversion of specific metabolites as a key mechanism linked to copper-induced damage of the colon.

RESULTS

High copper induced colonic damage, Lactobacillus extinction, and reduction of SCFA (acetate and butyrate) concentrations in pigs. LefSe analysis and q-PCR results confirmed the extinction of L. johnsonii. In addition, transplanting copper-rich fecal microbiota to ABX mice reproduced the gut characteristics of the pig donors. Then, L. johnsonii rescue could restore decreased SCFAs (mainly acetate and butyrate) and colonic barrier damage including thinner mucus layer, reduced colon length, and tight junction protein dysfunction. Given that acetate and butyrate concentrations exhibited a positive correlation with L. johnsonii abundance, we investigated how L. johnsonii exerted its effects by supplementing acetate and butyrate. L. johnsonii and butyrate administration but not acetate could correct the damaged colonic barrier. Acetate administration had no effects on butyrate concentration, indicating blocked conversion from acetate to butyrate. Furthermore, L. johnsonii rescue enriched a series of genera with butyrate-producing ability, mainly Lachnospiraceae NK4A136 group.

CONCLUSIONS

For the first time, we reveal the microbiota-mediated mechanism of high-copper-induced colonic damage in piglets. A high-copper diet can induce extinction of L. johnsonii which leads to colonic barrier damage and loss of SCFA production. Re-establishment of L. johnsonii normalizes the SCFA-producing pathway and restores colonic barrier function. Mechanistically, Lachnospiraceae NK4A136 group mediated conversion of acetate produced by L. johnsonii to butyrate is indispensable in the protection of colonic barrier function. Collectively, these findings provide a feasible mitigation strategy for gut damage caused by high-copper diets. Video Abstract.

摘要

背景

高铜饮食已被广泛用于促进猪的生长性能,但过量的铜补充也会对生态系统稳定和生物体健康产生负面影响。高铜补充会损害肠道屏障并扰乱肠道微生物群落。然而,高铜诱导的肠道损伤与肠道微生物群或其代谢物之间的具体关系尚不清楚。

目的

使用粪便微生物群移植和宏基因组测序,分析高铜饮食对结肠微生物群的反应。此外,通过比较特定细菌及其代谢物的拯救,我们研究了一个涉及特定代谢物转化的细菌-代谢物相互作用网络,作为与铜诱导的结肠损伤相关的关键机制。

结果

高铜诱导猪结肠损伤、约翰逊乳杆菌灭绝和短链脂肪酸(乙酸和丁酸)浓度降低。LefSe 分析和 q-PCR 结果证实了 L. johnsonii 的灭绝。此外,将富含铜的粪便微生物群移植到 ABX 小鼠中重现了供体猪的肠道特征。然后,L. johnsonii 拯救可以恢复降低的 SCFAs(主要是乙酸和丁酸)和结肠屏障损伤,包括更薄的黏液层、缩短的结肠长度和紧密连接蛋白功能障碍。鉴于乙酸和丁酸浓度与 L. johnsonii 丰度呈正相关,我们研究了 L. johnsonii 如何通过补充乙酸和丁酸发挥作用。L. johnsonii 和丁酸给药而不是乙酸可以纠正受损的结肠屏障。乙酸给药对丁酸浓度没有影响,表明从乙酸到丁酸的转化受阻。此外,L. johnsonii 拯救富集了一系列具有丁酸产生能力的属,主要是 Lachnospiraceae NK4A136 组。

结论

我们首次揭示了高铜诱导仔猪结肠损伤的微生物介导机制。高铜饮食可诱导约翰逊乳杆菌灭绝,导致结肠屏障损伤和短链脂肪酸产生减少。L. johnsonii 的重新建立使 SCFA 产生途径正常化并恢复结肠屏障功能。从机制上讲,Lachnospiraceae NK4A136 组介导的 L. johnsonii 产生的乙酸向丁酸的转化在保护结肠屏障功能方面是必不可少的。总之,这些发现为高铜饮食引起的肠道损伤提供了一种可行的缓解策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03d9/10542248/9d075483a4fa/40168_2023_1655_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验