Suppr超能文献

利用人工智能全自动估计泪膜弯月面高度。

A Fully Automatic Estimation of Tear Meniscus Height Using Artificial Intelligence.

机构信息

Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China.

Xiamen University affiliated Xiamen Eye Center; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.

出版信息

Invest Ophthalmol Vis Sci. 2023 Oct 3;64(13):7. doi: 10.1167/iovs.64.13.7.

Abstract

PURPOSE

Accurate quantification measurement of tear meniscus is vital for the precise diagnosis of dry eye. In current clinical practice, the measurement of tear meniscus height (TMH) relies on doctors' manual operation. This study aims to propose a novel automatic artificial intelligence (AI) system to evaluate TMH.

METHODS

A total of 510 photographs obtained by the oculus camera were labeled. Three thousand and five hundred images were finally attained by data enhancement to train the neural network model parameters, and 60 were used to evaluate the model performance in segmenting the cornea and tear meniscus region. One hundred images were used to test generalization ability of the model. We modified a segmentation model of the cornea and the tear meniscus based on the UNet-like network. The output of the segmentation model is followed by a calculation module that calculates and reports the TMH.

RESULTS

Compared with ground truth (GT) manually labeled by clinicians, our modified model achieved a Dice Similarity Coefficient (DSC) and Intersection over union (Iou) of 0.99/0.98 in the corneal segmentation task and 0.92/0.86 for the detection of tear meniscus on the validation set, respectively. On the test set, the TMH automatically measured by our AI system strongly correlates with the results manually calculated by the ophthalmologists.

CONCLUSIONS

We developed a fully automated and reliable AI system to obtain TMH. After large-scale clinical testing, our method could be used for dry eye screening in clinical practice.

摘要

目的

准确测量泪膜弯月高对于干眼的精确诊断至关重要。在当前的临床实践中,泪膜弯月高(TMH)的测量依赖于医生的手动操作。本研究旨在提出一种新的自动人工智能(AI)系统来评估 TMH。

方法

对 oculus 相机获得的 510 张照片进行标注。通过数据增强最终获得 3500 张图像来训练神经网络模型参数,并用 60 张图像评估模型对角膜和泪膜区域进行分割的性能。用 100 张图像测试模型的泛化能力。我们基于 UNet 样网络对角膜和泪膜分割模型进行了修改。分割模型的输出后面是一个计算模块,用于计算和报告 TMH。

结果

与由临床医生手动标注的地面实况(GT)相比,我们的改进模型在角膜分割任务中的 Dice 相似系数(DSC)和交并比(IoU)分别达到 0.99/0.98,在验证集上检测泪膜弯月高的分别达到 0.92/0.86。在测试集上,我们的 AI 系统自动测量的 TMH 与眼科医生手动计算的结果具有很强的相关性。

结论

我们开发了一种全自动、可靠的 AI 系统来获取 TMH。经过大规模的临床测试,我们的方法可用于临床实践中的干眼病筛查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1874/10565704/15f31a688299/iovs-64-13-7-f001.jpg

相似文献

1
A Fully Automatic Estimation of Tear Meniscus Height Using Artificial Intelligence.
Invest Ophthalmol Vis Sci. 2023 Oct 3;64(13):7. doi: 10.1167/iovs.64.13.7.
2
Measurement method of tear meniscus height based on deep learning.
Front Med (Lausanne). 2023 Feb 14;10:1126754. doi: 10.3389/fmed.2023.1126754. eCollection 2023.
3
TMIS: a new image-based software application for the measurement of tear meniscus height.
Acta Ophthalmol. 2019 Nov;97(7):e973-e980. doi: 10.1111/aos.14107. Epub 2019 May 2.
4
Tear meniscus measurement by spectral optical coherence tomography.
Optom Vis Sci. 2012 Mar;89(3):336-42. doi: 10.1097/OPX.0b013e318242042b.
5
Evaluation of tear meniscus height using different clinical methods.
Clin Exp Optom. 2021 Jul;104(5):583-588. doi: 10.1080/08164622.2021.1878854. Epub 2021 Mar 2.
6
Application of visante optical coherence tomography tear meniscus height measurement in the diagnosis of dry eye disease.
Ophthalmology. 2010 Oct;117(10):1923-9. doi: 10.1016/j.ophtha.2010.01.057. Epub 2010 Jun 3.
7
Tear meniscus measurement in the diagnosis of dry eye.
Curr Eye Res. 1996 Jun;15(6):653-61. doi: 10.3109/02713689609008906.
8
Interexaminer reproducibility of optical coherence tomography for measuring the tear film meniscus.
Curr Eye Res. 2014 Dec;39(12):1145-50. doi: 10.3109/02713683.2014.898311. Epub 2014 Apr 21.
9
Clinical assessment of the lower tear meniscus height.
Ophthalmic Physiol Opt. 2009 Sep;29(5):487-496. doi: 10.1111/j.1475-1313.2009.00634.x. Epub 2009 Jun 30.
10
The height and radius of the tear meniscus and methods for examining these parameters.
Cornea. 2000 Jul;19(4):497-500. doi: 10.1097/00003226-200007000-00019.

引用本文的文献

1
Advances in AI-assisted quantification of dry eye indicators.
Front Med (Lausanne). 2025 Jul 18;12:1628311. doi: 10.3389/fmed.2025.1628311. eCollection 2025.
2
Impact of image averaging on choroidal quantification using swept-source optical coherence tomography.
BMC Ophthalmol. 2025 Jul 1;25(1):371. doi: 10.1186/s12886-025-04189-3.
3
Efficacy of multifocal rigid gas permeable contact lenses to control myopia progression.
Sci Rep. 2025 May 18;15(1):17261. doi: 10.1038/s41598-025-01058-3.
5
A deep learning-assisted automatic measurement of tear meniscus height on ocular surface images and its application in myopia control.
Front Bioeng Biotechnol. 2025 Apr 11;13:1554432. doi: 10.3389/fbioe.2025.1554432. eCollection 2025.
6
Artificial Intelligence in Optometry: Current and Future Perspectives.
Clin Optom (Auckl). 2025 Mar 12;17:83-114. doi: 10.2147/OPTO.S494911. eCollection 2025.
7
Changes in Retinal Oxygen Saturation 1 Month After Femtosecond LASIK Treatment in Chinese Adults with Myopia.
Ophthalmol Ther. 2025 Mar;14(3):541-553. doi: 10.1007/s40123-024-01091-x. Epub 2025 Jan 21.
10
Risk of inappropriate causal inference in Mendelian randomization studies on myopia.
Eye (Lond). 2024 Oct;38(15):3019-3021. doi: 10.1038/s41433-024-03190-2. Epub 2024 Jun 27.

本文引用的文献

1
Measurement method of tear meniscus height based on deep learning.
Front Med (Lausanne). 2023 Feb 14;10:1126754. doi: 10.3389/fmed.2023.1126754. eCollection 2023.
3
Text Data Augmentation for Deep Learning.
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
4
Preventing corneal blindness caused by keratitis using artificial intelligence.
Nat Commun. 2021 Jun 18;12(1):3738. doi: 10.1038/s41467-021-24116-6.
5
Deep learning segmentation for optical coherence tomography measurements of the lower tear meniscus.
Biomed Opt Express. 2020 Feb 20;11(3):1539-1554. doi: 10.1364/BOE.386228. eCollection 2020 Mar 1.
6
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning.
Nat Biomed Eng. 2018 Mar;2(3):158-164. doi: 10.1038/s41551-018-0195-0. Epub 2018 Feb 19.
7
Dry Eye Disease: Prevalence, Assessment, and Management.
Home Healthc Now. 2018 Mar/Apr;36(2):74-83. doi: 10.1097/NHH.0000000000000652.
8
TFOS DEWS II Diagnostic Methodology report.
Ocul Surf. 2017 Jul;15(3):539-574. doi: 10.1016/j.jtos.2017.05.001. Epub 2017 Jul 20.
9
TFOS DEWS II Epidemiology Report.
Ocul Surf. 2017 Jul;15(3):334-365. doi: 10.1016/j.jtos.2017.05.003. Epub 2017 Jul 20.
10
TFOS DEWS II Definition and Classification Report.
Ocul Surf. 2017 Jul;15(3):276-283. doi: 10.1016/j.jtos.2017.05.008. Epub 2017 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验