Liu Mingxiao, Wilder Samuel, Sanford Sean, Glassen Michael, Dewil Sophie, Saleh Soha, Nataraj Raviraj
Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States.
Movement Control Rehabilitation (MOCORE) Laboratory, Altorfer Complex, Stevens Institute of Technology, Hoboken, NJ, United States.
Front Robot AI. 2023 Nov 22;10:1230086. doi: 10.3389/frobt.2023.1230086. eCollection 2023.
Physical therapy is crucial to rehabilitating hand function needed for activities of daily living after neurological traumas such as traumatic brain injury (TBI). Virtual reality (VR) can motivate participation in motor rehabilitation therapies. This study examines how multimodal feedback in VR to train grasp-and-place function will impact the neurological and motor responses in TBI participants ( = 7) compared to neurotypicals ( = 13). We newly incorporated VR with our existing intelligent glove system to seamlessly enhance the augmented visual and audio feedback to inform participants about grasp security. We then assessed how multimodal feedback (audio plus visual cues) impacted electroencephalography (EEG) power, grasp-and-place task performance (motion pathlength, completion time), and electromyography (EMG) measures. After training with multimodal feedback, electroencephalography (EEG) alpha power significantly increased for TBI and neurotypical groups. However, only the TBI group demonstrated significantly improved performance or significant shifts in EMG activity. These results suggest that the effectiveness of motor training with augmented sensory feedback will depend on the nature of the feedback and the presence of neurological dysfunction. Specifically, adding sensory cues may better consolidate early motor learning when neurological dysfunction is present. Computerized interfaces such as virtual reality offer a powerful platform to personalize rehabilitative training and improve functional outcomes based on neuropathology.
物理治疗对于在诸如创伤性脑损伤(TBI)等神经创伤后恢复日常生活活动所需的手部功能至关重要。虚拟现实(VR)可以促进参与运动康复治疗。本研究考察了与神经典型个体(n = 13)相比,VR中用于训练抓握和放置功能的多模态反馈对TBI参与者(n = 7)的神经和运动反应有何影响。我们将VR与现有的智能手套系统新结合,以无缝增强增强视觉和音频反馈,告知参与者抓握安全性。然后,我们评估了多模态反馈(音频加视觉线索)如何影响脑电图(EEG)功率、抓握和放置任务表现(运动路径长度、完成时间)以及肌电图(EMG)测量。在接受多模态反馈训练后,TBI组和神经典型组的脑电图(EEG)α功率均显著增加。然而,只有TBI组表现出显著改善的表现或EMG活动的显著变化。这些结果表明,增强感觉反馈的运动训练效果将取决于反馈的性质和神经功能障碍的存在。具体而言,当存在神经功能障碍时,添加感觉线索可能会更好地巩固早期运动学习。诸如虚拟现实等计算机化接口提供了一个强大的平台,可根据神经病理学个性化康复训练并改善功能结果。