From the Institutes of Health Informatics (T.Y.) and Cardiovascular Science (M.Q., J.A.S., V.M.), University College London, 20c Guilford Street, London WC1N 1DZ, England; Department of Cardiology, Boston Children's Hospital, Boston, Mass (N.S.C., G.F.M., S.G., D.S., R.H.R.); Department of Pediatrics, University of Michigan, Ann Arbor, Mich (A.L.D.); Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pa (M.A.F.); Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio (R.K.); Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada (C.Z.L.); Department of Pediatrics, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Ill (J.D.R.); Department of Pediatric Cardiology, Emory University School of Medicine, Atlanta, Ga (T.C.S.); and Department of Cardiology, Texas Children's Hospital, Houston, Tex (J.W.).
Radiol Artif Intell. 2024 Jan;6(1):e230132. doi: 10.1148/ryai.230132.
Purpose To develop an end-to-end deep learning (DL) pipeline for automated ventricular segmentation of cardiac MRI data from a multicenter registry of patients with Fontan circulation (Fontan Outcomes Registry Using CMR Examinations [FORCE]). Materials and Methods This retrospective study used 250 cardiac MRI examinations (November 2007-December 2022) from 13 institutions for training, validation, and testing. The pipeline contained three DL models: a classifier to identify short-axis cine stacks and two U-Net 3+ models for image cropping and segmentation. The automated segmentations were evaluated on the test set ( = 50) by using the Dice score. Volumetric and functional metrics derived from DL and ground truth manual segmentations were compared using Bland-Altman and intraclass correlation analysis. The pipeline was further qualitatively evaluated on 475 unseen examinations. Results There were acceptable limits of agreement (LOA) and minimal biases between the ground truth and DL end-diastolic volume (EDV) (bias: -0.6 mL/m, LOA: -20.6 to 19.5 mL/m) and end-systolic volume (ESV) (bias: -1.1 mL/m, LOA: -18.1 to 15.9 mL/m), with high intraclass correlation coefficients (ICCs > 0.97) and Dice scores (EDV, 0.91 and ESV, 0.86). There was moderate agreement for ventricular mass (bias: -1.9 g/m, LOA: -17.3 to 13.5 g/m) and an ICC of 0.94. There was also acceptable agreement for stroke volume (bias: 0.6 mL/m, LOA: -17.2 to 18.3 mL/m) and ejection fraction (bias: 0.6%, LOA: -12.2% to 13.4%), with high ICCs (>0.81). The pipeline achieved satisfactory segmentation in 68% of the 475 unseen examinations, while 26% needed minor adjustments, 5% needed major adjustments, and in 0.4%, the cropping model failed. Conclusion The DL pipeline can provide fast standardized segmentation for patients with single ventricle physiology across multiple centers. This pipeline can be applied to all cardiac MRI examinations in the FORCE registry. Cardiac, Adults and Pediatrics, MR Imaging, Congenital, Volume Analysis, Segmentation, Quantification © RSNA, 2023.
开发一个端到端的深度学习(DL)管道,用于自动分割来自 Fontan 循环患者多中心注册中心的心脏 MRI 数据(使用心脏 MRI 检查的 Fontan 结局注册中心[FORCE])。
本回顾性研究使用了来自 13 个机构的 250 项心脏 MRI 检查(2007 年 11 月至 2022 年 12 月)用于训练、验证和测试。该管道包含三个 DL 模型:一个分类器,用于识别短轴电影堆叠,以及两个 U-Net 3+模型,用于图像裁剪和分割。通过使用 Dice 评分,在测试集(n = 50)上评估自动分割。使用 Bland-Altman 和组内相关分析比较从 DL 和地面实况手动分割中得出的容积和功能指标。该管道还对 475 个未见的检查进行了定性评估。
在地面实况和 DL 舒张末期容积(EDV)(偏差:-0.6 毫升/米,LOA:-20.6 至 19.5 毫升/米)和收缩末期容积(ESV)(偏差:-1.1 毫升/米,LOA:-18.1 至 15.9 毫升/米)之间存在可接受的一致性限(LOA)和最小偏差,具有高组内相关系数(ICC > 0.97)和 Dice 评分(EDV,0.91 和 ESV,0.86)。对于心室质量(偏差:-1.9 克/米,LOA:-17.3 至 13.5 克/米)和 ICC 为 0.94,也存在中等一致性。对于每搏量(偏差:0.6 毫升/米,LOA:-17.2 至 18.3 毫升/米)和射血分数(偏差:0.6%,LOA:-12.2%至 13.4%),也存在可接受的一致性,ICC 较高(>0.81)。该管道在 475 个未见检查中的 68%实现了令人满意的分割,而 26%需要进行微小调整,5%需要进行重大调整,0.4%的裁剪模型失败。
DL 管道可以为多个中心的单心室生理患者提供快速的标准化分割。该管道可应用于 FORCE 注册中心的所有心脏 MRI 检查。
心脏、成人和儿科、磁共振成像、先天性、容积分析、分割、量化