Suppr超能文献

基于单通道 EEG 的时频和非线性特征对磨牙症进行分类。

Classification of bruxism based on time-frequency and nonlinear features of single channel EEG.

机构信息

School of Physics and Electronic Engineering, Hanshan Normal University, Chaozhou, Guangdong, 521041, China.

School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND, 58202, USA.

出版信息

BMC Oral Health. 2024 Jan 14;24(1):81. doi: 10.1186/s12903-024-03865-y.

Abstract

BACKGROUND

In the classification of bruxism patients based on electroencephalogram (EEG), feature extraction is essential. The method of using multi-channel EEG fusing electrocardiogram (ECG) and Electromyography (EMG) signal features has been proved to have good performance in bruxism classification, but the classification performance based on single channel EEG signal is still understudied. We investigate the efficacy of single EEG channel in bruxism classification.

METHODS

We have extracted time-domain, frequency-domain, and nonlinear features from single EEG channel to classify bruxism. Five common bipolar EEG recordings from 2 bruxism patients and 4 healthy controls during REM sleep were analyzed. The time domain (mean, standard deviation, root mean squared value), frequency domain (absolute, relative and ratios power spectral density (PSD)), and non-linear features (sample entropy) of different EEG frequency bands were analyzed from five EEG channels of each participant. Fine tree algorithm was trained and tested for classifying sleep bruxism with healthy controls using five-fold cross-validation.

RESULTS

Our results demonstrate that the C4P4 EEG channel was most effective for classification of sleep bruxism that yielded 95.59% sensitivity, 98.44% specificity, 97.84% accuracy, and 94.20% positive predictive value (PPV).

CONCLUSIONS

Our results illustrate the feasibility of sleep bruxism classification using single EEG channel and provides an experimental foundation for the development of a future portable automatic sleep bruxism detection system.

摘要

背景

在基于脑电图(EEG)对磨牙症患者进行分类时,特征提取至关重要。使用多通道 EEG 融合心电图(ECG)和肌电图(EMG)信号特征的方法已被证明在磨牙症分类中具有良好的性能,但基于单通道 EEG 信号的分类性能仍有待研究。我们研究了单通道 EEG 在磨牙症分类中的效果。

方法

我们从单通道 EEG 中提取时域、频域和非线性特征来对磨牙症进行分类。分析了 2 名磨牙症患者和 4 名健康对照者在 REM 睡眠期间的 5 个常见双极 EEG 记录。分析了每位参与者的 5 个 EEG 通道的不同 EEG 频带的时域(均值、标准差、均方根值)、频域(绝对、相对和比值功率谱密度(PSD))和非线性特征(样本熵)。使用五折交叉验证,Fine tree 算法被训练和测试用于分类睡眠磨牙症和健康对照者。

结果

我们的结果表明,C4P4 EEG 通道最适合睡眠磨牙症的分类,其灵敏度为 95.59%,特异性为 98.44%,准确率为 97.84%,阳性预测值(PPV)为 94.20%。

结论

我们的结果说明了使用单通道 EEG 进行睡眠磨牙症分类的可行性,并为未来便携式自动睡眠磨牙症检测系统的开发提供了实验基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6adc/10787956/5200096553e4/12903_2024_3865_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验