Suppr超能文献

利用组学推进联合免疫治疗策略的事实和希望。

Facts and Hopes in Using Omics to Advance Combined Immunotherapy Strategies.

机构信息

UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.

Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

Clin Cancer Res. 2024 May 1;30(9):1724-1732. doi: 10.1158/1078-0432.CCR-22-2241.

Abstract

The field of oncology has been transformed by immune checkpoint inhibitors (ICI) and other immune-based agents; however, many patients do not receive a durable benefit. While biomarker assessments from pivotal ICI trials have uncovered certain mechanisms of resistance, results thus far have only scraped the surface. Mechanisms of resistance are as complex as the tumor microenvironment (TME) itself, and the development of effective therapeutic strategies will only be possible by building accurate models of the tumor-immune interface. With advancement of multi-omic technologies, high-resolution characterization of the TME is now possible. In addition to sequencing of bulk tumor, single-cell transcriptomic, proteomic, and epigenomic data as well as T-cell receptor profiling can now be simultaneously measured and compared between responders and nonresponders to ICI. Spatial sequencing and imaging platforms have further expanded the dimensionality of existing technologies. Rapid advancements in computation and data sharing strategies enable development of biologically interpretable machine learning models to integrate data from high-resolution, multi-omic platforms. These models catalyze the identification of resistance mechanisms and predictors of benefit in ICI-treated patients, providing scientific foundation for novel clinical trials. Moving forward, we propose a framework by which in silico screening, functional validation, and clinical trial biomarker assessment can be used for the advancement of combined immunotherapy strategies.

摘要

肿瘤学领域已经发生了变革,免疫检查点抑制剂(ICI)和其他免疫疗法药物已经问世;然而,许多患者并未从中获得持久的获益。虽然关键性 ICI 试验中的生物标志物评估揭示了某些耐药机制,但迄今为止,这些研究结果只是冰山一角。耐药机制与肿瘤微环境(TME)本身一样复杂,只有通过构建精确的肿瘤-免疫界面模型,才能开发出有效的治疗策略。随着多组学技术的进步,现在可以对 TME 进行高分辨率的特征描述。除了对肿瘤进行批量测序外,现在还可以同时测量和比较对 ICI 有反应者和无反应者的单细胞转录组、蛋白质组和表观基因组数据以及 T 细胞受体谱。空间测序和成像平台进一步扩展了现有技术的维度。计算和数据共享策略的快速发展使具有生物学可解释性的机器学习模型得以开发,从而整合来自高分辨率、多组学平台的数据。这些模型促进了对 ICI 治疗患者耐药机制和获益预测因子的识别,为新的临床试验提供了科学基础。展望未来,我们提出了一个框架,通过该框架可以进行计算机筛选、功能验证和临床试验生物标志物评估,从而推进联合免疫治疗策略。

相似文献

1
Facts and Hopes in Using Omics to Advance Combined Immunotherapy Strategies.
Clin Cancer Res. 2024 May 1;30(9):1724-1732. doi: 10.1158/1078-0432.CCR-22-2241.
2
Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade.
Front Immunol. 2022 Jan 7;12:799455. doi: 10.3389/fimmu.2021.799455. eCollection 2021.
3
Dissecting the tumor microenvironment in response to immune checkpoint inhibitors via single-cell and spatial transcriptomics.
Clin Exp Metastasis. 2024 Aug;41(4):313-332. doi: 10.1007/s10585-023-10246-2. Epub 2023 Dec 8.
4
Genomics-based immuno-oncology: bridging the gap between immunology and tumor biology.
Hum Mol Genet. 2020 Oct 20;29(R2):R214-R225. doi: 10.1093/hmg/ddaa203.
5
Biomarkers and computational models for predicting efficacy to tumor ICI immunotherapy.
Front Immunol. 2024 Mar 8;15:1368749. doi: 10.3389/fimmu.2024.1368749. eCollection 2024.
6
Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies.
Drug Resist Updat. 2020 Dec;53:100718. doi: 10.1016/j.drup.2020.100718. Epub 2020 Jul 15.
7
Status of Immune Oncology: Challenges and Opportunities.
Methods Mol Biol. 2020;2055:3-21. doi: 10.1007/978-1-4939-9773-2_1.
9
Applications of Single-Cell Omics in Tumor Immunology.
Front Immunol. 2021 Jun 9;12:697412. doi: 10.3389/fimmu.2021.697412. eCollection 2021.

引用本文的文献

2
Neoantigen-based immunotherapy: advancing precision medicine in cancer and glioblastoma treatment through discovery and innovation.
Explor Target Antitumor Ther. 2025 Apr 27;6:1002313. doi: 10.37349/etat.2025.1002313. eCollection 2025.
3
Ten challenges and opportunities in computational immuno-oncology.
J Immunother Cancer. 2024 Oct 26;12(10):e009721. doi: 10.1136/jitc-2024-009721.
4
Rapidly Evolving Pre- and Post-surgical Systemic Treatment of Melanoma.
Am J Clin Dermatol. 2024 May;25(3):421-434. doi: 10.1007/s40257-024-00852-5. Epub 2024 Feb 26.

本文引用的文献

1
CODEX multiplexed tissue imaging.
Nat Rev Immunol. 2023 Oct;23(10):613. doi: 10.1038/s41577-023-00936-z.
2
Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial.
Nat Med. 2023 Aug;29(8):2121-2132. doi: 10.1038/s41591-023-02453-x. Epub 2023 Jul 6.
4
Targeting Cbl-b in cancer immunotherapy.
J Immunother Cancer. 2023 Feb;11(2). doi: 10.1136/jitc-2022-006007.
5
Arginase 1 is a key driver of immune suppression in pancreatic cancer.
Elife. 2023 Feb 2;12:e80721. doi: 10.7554/eLife.80721.
6
γδ T cells are effectors of immunotherapy in cancers with HLA class I defects.
Nature. 2023 Jan;613(7945):743-750. doi: 10.1038/s41586-022-05593-1. Epub 2023 Jan 11.
7
Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome.
Med. 2023 Jan 13;4(1):15-30.e8. doi: 10.1016/j.medj.2022.11.001. Epub 2022 Dec 12.
8
Spatial transcriptomics technology in cancer research.
Front Oncol. 2022 Oct 13;12:1019111. doi: 10.3389/fonc.2022.1019111. eCollection 2022.
10
Machine learning on syngeneic mouse tumor profiles to model clinical immunotherapy response.
Sci Adv. 2022 Oct 14;8(41):eabm8564. doi: 10.1126/sciadv.abm8564.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验