Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
WATEC Aarhus University Centre for Water Technology, Aarhus, Denmark.
NPJ Biofilms Microbiomes. 2021 Mar 19;7(1):27. doi: 10.1038/s41522-021-00197-5.
Extracellular DNA, or eDNA, is recognised as a critical biofilm component; however, it is not understood how it forms networked matrix structures. Here, we isolate eDNA from static-culture Pseudomonas aeruginosa biofilms using ionic liquids to preserve its biophysical signatures of fluid viscoelasticity and the temperature dependency of DNA transitions. We describe a loss of eDNA network structure as resulting from a change in nucleic acid conformation, and propose that its ability to form viscoelastic structures is key to its role in building biofilm matrices. Solid-state analysis of isolated eDNA, as a proxy for eDNA structure in biofilms, reveals non-canonical Hoogsteen base pairs, triads or tetrads involving thymine or uracil, and guanine, suggesting that the eDNA forms G-quadruplex structures. These are less abundant in chromosomal DNA and disappear when eDNA undergoes conformation transition. We verify the occurrence of G-quadruplex structures in the extracellular matrix of intact static and flow-cell biofilms of P. aeruginosa, as displayed by the matrix to G-quadruplex-specific antibody binding, and validate the loss of G-quadruplex structures in vivo to occur coincident with the disappearance of eDNA fibres. Given their stability, understanding how extracellular G-quadruplex structures form will elucidate how P. aeruginosa eDNA builds viscoelastic networks, which are a foundational biofilm property.
细胞外 DNA(eDNA)被认为是生物膜的关键组成部分;然而,其如何形成网络基质结构仍不清楚。在这里,我们使用离子液体从静态培养的铜绿假单胞菌生物膜中分离 eDNA,以保留其流体粘弹性的生物物理特征和 DNA 转变的温度依赖性。我们描述了 eDNA 网络结构的丧失是由于核酸构象的变化,并且提出其形成粘弹性结构的能力是其在构建生物膜基质中的作用的关键。作为生物膜中 eDNA 结构的替代物,分离的 eDNA 的固态分析揭示了涉及胸腺嘧啶或尿嘧啶和鸟嘌呤的非典型 Hoogsteen 碱基对、三联体或四联体,表明 eDNA 形成 G-四链体结构。这些在染色体 DNA 中较少,并且当 eDNA 经历构象转变时消失。我们通过基质与 G-四链体特异性抗体结合的方式验证了完整静态和流动池生物膜中 P. aeruginosa 细胞外基质中 G-四链体结构的发生,并验证了体内 G-四链体结构的丧失与 eDNA 纤维的消失同时发生。鉴于它们的稳定性,了解细胞外 G-四链体结构的形成方式将阐明铜绿假单胞菌 eDNA 如何构建粘弹性网络,这是生物膜的基础特性。