Bentz J, Ellens H, Lai M Z, Szoka F C
Proc Natl Acad Sci U S A. 1985 Sep;82(17):5742-5. doi: 10.1073/pnas.82.17.5742.
The abundance of phosphatidylethanolamine (PtdEtn) in biological membranes and the capacity of this lipid to sustain nonbilayer structures have been promoted as evidence for a role of PtdEtn in biological fusion processes. To date there has been no direct evidence of a connection between the kinetics of bilayer destabilization and the polymorphism accessible to PtdEtn. We have developed a model system to examine this point directly using the proton-induced destabilization of PtdEtn/cholesterylhemisuccinate unilamellar liposomes. We find that the initial rate of bilayer mixing rapidly increases with temperature and reaches a maximal level just below the HII-phase transition temperature. The leakage from these liposomes rapidly increases, both in rate and extent, within the HII-phase transition temperature range. Of an even greater significance is that at no temperature is there any mixing of aqueous contents within the liposomes. Thus, these lipids can begin to undergo the lamellar- to HII-phase transition at the stage of two apposed liposomes. However, the nonbilayer structures formed do not cause fusion--i.e., the concomitant mixing of aqueous contents.
生物膜中磷脂酰乙醇胺(PtdEtn)的丰度以及这种脂质维持非双层结构的能力,已被视作PtdEtn在生物融合过程中发挥作用的证据。迄今为止,尚无直接证据表明双层膜去稳定化动力学与PtdEtn可形成的多态性之间存在关联。我们开发了一个模型系统,通过质子诱导的PtdEtn/胆固醇半琥珀酸单层脂质体去稳定化来直接研究这一点。我们发现,双层膜混合的初始速率随温度迅速增加,并在刚好低于HII相转变温度时达到最高水平。在HII相转变温度范围内,这些脂质体的渗漏在速率和程度上都迅速增加。更重要的是,在任何温度下,脂质体内的水性内容物都不会发生混合。因此,可以在两个相邻脂质体阶段开始经历从层状相到HII相的转变。然而,形成的非双层结构不会导致融合,即水性内容物的伴随混合。