文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物质聚合物的药物应用:当前研究与展望综述

Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives.

作者信息

Bejenaru Cornelia, Radu Antonia, Segneanu Adina-Elena, Biţă Andrei, Ciocîlteu Maria Viorica, Mogoşanu George Dan, Bradu Ionela Amalia, Vlase Titus, Vlase Gabriela, Bejenaru Ludovic Everard

机构信息

Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj, Romania.

Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086 Timişoara, Timiş, Romania.

出版信息

Polymers (Basel). 2024 Apr 23;16(9):1182. doi: 10.3390/polym16091182.


DOI:10.3390/polym16091182
PMID:38732651
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11085205/
Abstract

Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.

摘要

源自天然生物质的聚合物因其多功能性已成为生物医学领域的宝贵资源。多糖、肽、蛋白质和木质素在包括药物递送设计在内的各种应用中已显示出有前景的结果。然而,要充分发挥这些聚合物的潜力,还需要应对若干挑战。本文全面概述了该领域的最新研究和观点,特别侧重于开发有效的方法和高效的药物递送系统。本综述旨在深入探讨与在生物医学中使用天然聚合物相关的机遇和挑战,并为该领域的未来研究提供路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/2165baf4c0d0/polymers-16-01182-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/25c5721a3aad/polymers-16-01182-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/4f1eb3e4bcde/polymers-16-01182-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/1fd6f47921a7/polymers-16-01182-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/99851a0636f0/polymers-16-01182-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/25a66dffe293/polymers-16-01182-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/4bcac8b0433a/polymers-16-01182-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/529ab8609bc2/polymers-16-01182-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/d73688bf77f3/polymers-16-01182-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/14db176f80c3/polymers-16-01182-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/1889ce26c2ca/polymers-16-01182-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/8d19604db047/polymers-16-01182-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/9dd70f4eb8fc/polymers-16-01182-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/0b7561a1ca50/polymers-16-01182-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/cbd865e7a2af/polymers-16-01182-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/a3d9a4d2b202/polymers-16-01182-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/70bc1e9ff6eb/polymers-16-01182-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/526476882160/polymers-16-01182-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/e80d818aefed/polymers-16-01182-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/b4768f23d04b/polymers-16-01182-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/d0c93dd92c74/polymers-16-01182-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/428ca4c80a64/polymers-16-01182-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/0173c2572257/polymers-16-01182-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/fd087379ab4e/polymers-16-01182-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/2165baf4c0d0/polymers-16-01182-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/25c5721a3aad/polymers-16-01182-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/4f1eb3e4bcde/polymers-16-01182-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/1fd6f47921a7/polymers-16-01182-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/99851a0636f0/polymers-16-01182-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/25a66dffe293/polymers-16-01182-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/4bcac8b0433a/polymers-16-01182-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/529ab8609bc2/polymers-16-01182-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/d73688bf77f3/polymers-16-01182-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/14db176f80c3/polymers-16-01182-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/1889ce26c2ca/polymers-16-01182-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/8d19604db047/polymers-16-01182-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/9dd70f4eb8fc/polymers-16-01182-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/0b7561a1ca50/polymers-16-01182-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/cbd865e7a2af/polymers-16-01182-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/a3d9a4d2b202/polymers-16-01182-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/70bc1e9ff6eb/polymers-16-01182-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/526476882160/polymers-16-01182-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/e80d818aefed/polymers-16-01182-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/b4768f23d04b/polymers-16-01182-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/d0c93dd92c74/polymers-16-01182-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/428ca4c80a64/polymers-16-01182-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/0173c2572257/polymers-16-01182-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/fd087379ab4e/polymers-16-01182-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153c/11085205/2165baf4c0d0/polymers-16-01182-g024.jpg

相似文献

[1]
Pharmaceutical Applications of Biomass Polymers: Review of Current Research and Perspectives.

Polymers (Basel). 2024-4-23

[2]
Recent advances in pharmaceutical and biotechnological applications of lignin-based materials.

Int J Biol Macromol. 2023-6-30

[3]
A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications.

Int J Mol Sci. 2024-1-22

[4]
Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases.

Int J Mol Sci. 2023-8-19

[5]
Levan-based nanostructured systems: An overview.

Int J Pharm. 2020-4-30

[6]
Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications.

Int J Mol Sci. 2023-8-30

[7]
Cellulose and Lignin-Derived Scaffold and Their Biological Application in Tissue Engineering, Drug Delivery, and Wound Healing: A Review.

Cell J. 2023-3-7

[8]
Traditional Chinese medicine polysaccharide in nano-drug delivery systems: Current progress and future perspectives.

Biomed Pharmacother. 2024-4

[9]
Multiple Natural Polymers in Drug and Gene Delivery Systems.

Curr Med Chem. 2024

[10]
Unveiling the potentials of hydrophilic and hydrophobic polymers in microparticle systems: Opportunities and challenges in processing techniques.

Adv Colloid Interface Sci. 2024-4

引用本文的文献

[1]
Design and Evaluation of a -AgNP-Maltodextrin Delivery System: Antioxidant, Antimicrobial, Acetylcholinesterase Inhibitory and Cytotoxic Potential.

Polymers (Basel). 2025-8-7

[2]
Design and Evaluation of a -Kaolinite-Maltodextrin Delivery System: Antioxidant, Antimicrobial, and Cytotoxic Activity Assessment.

Pharmaceutics. 2025-6-6

[3]
Bioactive Substances and Skin Health: An Integrative Review from a Pharmacy and Nutrition Perspective.

Pharmaceuticals (Basel). 2025-3-6

[4]
Wild-Grown Romanian : Advancing Phyto-Nanocarriers via Maltodextrin Micro-Spray Encapsulation-Metabolite Profiling, Antioxidant, Antimicrobial, and Cytotoxicity Insights.

Polymers (Basel). 2025-2-12

[5]
Advancing Gel Systems with Natural Extracts: Antioxidant, Antimicrobial Applications, and Sustainable Innovations.

Gels. 2025-2-8

[6]
Advances in bio-polymer coatings for probiotic microencapsulation: chitosan and beyond for enhanced stability and controlled release.

Des Monomers Polym. 2024-12-31

[7]
Innovative Strategies for Upcycling Agricultural Residues and Their Various Pharmaceutical Applications.

Plants (Basel). 2024-8-1

本文引用的文献

[1]
Developing natural polymers for skin wound healing.

Bioact Mater. 2023-11-26

[2]
Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates.

Polymers (Basel). 2024-1-10

[3]
Preparation and evaluation of luteolin-loaded PLA-based shape memory gastroretentive drug delivery systems.

Int J Pharm. 2024-1-25

[4]
Applications of guar gum polysaccharide for pharmaceutical drug delivery: A review.

Int J Biol Macromol. 2024-2

[5]
Natural and Synthetic Polymeric Biomaterials for Application in Wound Management.

J Funct Biomater. 2023-9-3

[6]
Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing.

Materials (Basel). 2023-8-3

[7]
Nano-based drug delivery system for therapeutics: a comprehensive review.

Biomed Phys Eng Express. 2023-8-17

[8]
Recent developments in natural biopolymer based drug delivery systems.

RSC Adv. 2023-7-31

[9]
Advances in drug delivery systems, challenges and future directions.

Heliyon. 2023-6-24

[10]
An Accessible Method to Improve the Stability and Reusability of Porcine Pancreatic α-Amylase via Immobilization in Gellan-Based Hydrogel Particles Obtained by Ionic Cross-Linking with Mg Ions.

Molecules. 2023-6-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索