Vlase Gabriela, Segneanu Adina-Elena, Bejenaru Ludovic Everard, Bradu Ionela Amalia, Sicoe Crina, Vlase Titus, Mogoşanu George Dan, Buema Gabriela, Herea Dumitru-Daniel, Ciocîlteu Maria Viorica, Bejenaru Cornelia
Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086 Timişoara, Timiş County, Romania.
Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Timiş County, Romania.
Polymers (Basel). 2025 Feb 12;17(4):482. doi: 10.3390/polym17040482.
In Romanian ethnopharmacology, species is known for its remarkable biological activity. We present an advanced approach to encapsulation using maltodextrin matrices to enhance the stability and efficacy of phytoconstituents and nanoparticles. Two distinct carrier systems were developed: (i) a direct micro-spray encapsulation of in maltodextrin to produce a maltodextrin-encapsulated carrier (MEC), and (ii) a two-step process involving the preparation of a new phytocarrier system based on gold nanoparticles (EC-AuNPs), followed by micro-spray encapsulation in maltodextrin to create the maltodextrin-encapsulated AuNPs system (MEC-AuNPs system). Comprehensive chemical profiling using GC-MS and ESI-QTOF-MS revealed 80 bioactive molecules, including terpenoids, alkaloids, flavonoids, and phytoecdysteroids. Morpho-structural (XRD, FTIR, Raman spectroscopy, SEM) and thermal analyses confirmed the successful integration of NPs within the matrices. EC-AuNPs and MEC-AuNPs exhibited superior antioxidant activity, significant antimicrobial efficacy against major bacterial pathogens (, , , , , and ), and enhanced cytotoxicity against MCF-7 and HT-29 cancer cell lines. This study highlights the potential of combining with AuNPs and maltodextrin encapsulation to develop multifunctional therapeutic systems. The findings underscore the importance of phytoconstituent stabilization and nanotechnology in addressing global antimicrobial resistance and advancing innovative medical applications.
在罗马尼亚民族药理学中,该物种以其显著的生物活性而闻名。我们提出了一种先进的包封方法,使用麦芽糊精基质来提高植物成分和纳米颗粒的稳定性和功效。开发了两种不同的载体系统:(i)将该物质直接微喷雾包封在麦芽糊精中,以制备麦芽糊精包封的载体(MEC),以及(ii)两步法,包括制备基于金纳米颗粒的新型植物载体系统(EC-AuNPs),然后在麦芽糊精中进行微喷雾包封,以创建麦芽糊精包封的金纳米颗粒系统(MEC-AuNPs系统)。使用气相色谱-质谱联用仪(GC-MS)和电喷雾离子化四极杆飞行时间质谱仪(ESI-QTOF-MS)进行的综合化学分析揭示了80种生物活性分子,包括萜类化合物、生物碱、黄酮类化合物和植物蜕皮甾酮。形态结构(X射线衍射、傅里叶变换红外光谱、拉曼光谱、扫描电子显微镜)和热分析证实了纳米颗粒在基质中的成功整合。EC-AuNPs和MEC-AuNPs表现出卓越的抗氧化活性、对主要细菌病原体([具体细菌名称1]、[具体细菌名称2]、[具体细菌名称3]、[具体细菌名称4]、[具体细菌名称5]和[具体细菌名称6])的显著抗菌功效,以及对MCF-7和HT-29癌细胞系增强的细胞毒性。本研究强调了将该物质与金纳米颗粒和麦芽糊精包封相结合以开发多功能治疗系统的潜力。这些发现强调了植物成分稳定化和纳米技术在应对全球抗菌耐药性以及推进创新医学应用方面的重要性。
Antioxidants (Basel). 2022-11-16
Biology (Basel). 2024-4-24
Polymers (Basel). 2024-4-23
Drug Deliv Transl Res. 2024-6