机器学习综合方法推进计算免疫学。

Machine learning integrative approaches to advance computational immunology.

机构信息

Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.

Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.

出版信息

Genome Med. 2024 Jun 11;16(1):80. doi: 10.1186/s13073-024-01350-3.

Abstract

The study of immunology, traditionally reliant on proteomics to evaluate individual immune cells, has been revolutionized by single-cell RNA sequencing. Computational immunologists play a crucial role in analysing these datasets, moving beyond traditional protein marker identification to encompass a more detailed view of cellular phenotypes and their functional roles. Recent technological advancements allow the simultaneous measurements of multiple cellular components-transcriptome, proteome, chromatin, epigenetic modifications and metabolites-within single cells, including in spatial contexts within tissues. This has led to the generation of complex multiscale datasets that can include multimodal measurements from the same cells or a mix of paired and unpaired modalities. Modern machine learning (ML) techniques allow for the integration of multiple "omics" data without the need for extensive independent modelling of each modality. This review focuses on recent advancements in ML integrative approaches applied to immunological studies. We highlight the importance of these methods in creating a unified representation of multiscale data collections, particularly for single-cell and spatial profiling technologies. Finally, we discuss the challenges of these holistic approaches and how they will be instrumental in the development of a common coordinate framework for multiscale studies, thereby accelerating research and enabling discoveries in the computational immunology field.

摘要

免疫学的研究传统上依赖于蛋白质组学来评估单个免疫细胞,而单细胞 RNA 测序技术的出现彻底改变了这一局面。计算免疫学家在分析这些数据集方面发挥着至关重要的作用,他们不仅超越了传统的蛋白质标志物识别,还涵盖了对细胞表型及其功能角色的更详细的观察。最近的技术进步使得能够在单细胞内同时测量多个细胞成分——转录组、蛋白质组、染色质、表观遗传修饰和代谢物——包括组织内的空间环境。这导致了复杂的多尺度数据集的产生,这些数据集可以包括来自同一细胞的多模态测量结果,或者是混合的配对和非配对模态。现代机器学习 (ML) 技术允许在不需要对每种模态进行广泛独立建模的情况下,整合多个“组学”数据。这篇综述重点介绍了应用于免疫学研究的 ML 集成方法的最新进展。我们强调了这些方法在创建多尺度数据集的统一表示方面的重要性,特别是对于单细胞和空间分析技术。最后,我们讨论了这些整体方法所面临的挑战,以及它们如何在开发多尺度研究的通用坐标框架方面发挥作用,从而加速计算免疫学领域的研究并推动发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7716/11165829/423cbb15a111/13073_2024_1350_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索