Suppr超能文献

基于多通道长短期记忆型尖峰神经网络模型的 EEG 信号癫痫发作检测。

Seizure Detection of EEG Signals Based on Multi-Channel Long- and Short-Term Memory-Like Spiking Neural Model.

机构信息

School of Computer and Software Engineering, Xihua University, Chengdu 610039, P. R. China.

School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, P. R. China.

出版信息

Int J Neural Syst. 2024 Oct;34(10):2450051. doi: 10.1142/S0129065724500515. Epub 2024 Jul 13.

Abstract

Seizure is a common neurological disorder that usually manifests itself in recurring seizure, and these seizures can have a serious impact on a person's life and health. Therefore, early detection and diagnosis of seizure is crucial. In order to improve the efficiency of early detection and diagnosis of seizure, this paper proposes a new seizure detection method, which is based on discrete wavelet transform (DWT) and multi-channel long- and short-term memory-like spiking neural P (LSTM-SNP) model. First, the signal is decomposed into 5 levels by using DWT transform to obtain the features of the components at different frequencies, and a series of time-frequency features in wavelet coefficients are extracted. Then, these different features are used to train a multi-channel LSTM-SNP model and perform seizure detection. The proposed method achieves a high seizure detection accuracy on the CHB-MIT dataset: 98.25% accuracy, 98.22% specificity and 97.59% sensitivity. This indicates that the proposed epilepsy detection method can show competitive detection performance.

摘要

癫痫是一种常见的神经系统疾病,通常表现为反复发作的癫痫发作,这些癫痫发作会对人的生活和健康产生严重影响。因此,早期发现和诊断癫痫至关重要。为了提高癫痫早期检测和诊断的效率,本文提出了一种新的癫痫检测方法,该方法基于离散小波变换(DWT)和多通道长短期记忆类似尖峰神经元 P(LSTM-SNP)模型。首先,使用 DWT 变换将信号分解为 5 个级别,以获得不同频率分量的特征,并提取小波系数中的一系列时频特征。然后,使用这些不同的特征来训练多通道 LSTM-SNP 模型并进行癫痫发作检测。在 CHB-MIT 数据集上,所提出的方法实现了高的癫痫检测精度:98.25%的准确率、98.22%的特异性和 97.59%的灵敏度。这表明所提出的癫痫检测方法可以表现出有竞争力的检测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验