Centre for Tissue Engineering Centre and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia.
Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, 43600, Malaysia.
Int J Nanomedicine. 2024 Jul 9;19:6845-6855. doi: 10.2147/IJN.S465189. eCollection 2024.
Collagen, a widely used natural biomaterial polymer in skin tissue engineering, can be innovatively processed into nanocollagen through cryogenic milling to potentially enhance skin tissue healing. Although various methods for fabricating nanocollagen have been documented, there is no existing study on the fabrication of nanocollagen via cryogenic milling, specifically employing graphene oxide as separators to prevent agglomeration.
In this study, three research groups were created using cryogenic milling: pure nanocollagen (Pure NC), nanocollagen with 0.005% graphene oxide (NC + 0.005% GO), and nanocollagen with 0.01% graphene oxide (NC+0.01% GO). Characterization analyses included transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction (XRD), zeta potential (ZP), and polydispersity index (PDI).
TEM and SEM analysis revealed that nanocollagen groups alone exhibited particle sizes of less than 100 nm. FTIR spectroscopic investigations indicated the presence of amide A, B, and I, II, and III (1800 to 800 cm) in all nanocollagen study groups, with the characteristic C-O-C stretching suggesting the incorporation of graphene oxide (GO). XRD data exhibited broadening of the major peak as the proportion of GO increased from pure NC to the nanocollagen groups with GO. Zeta potential measurements indicated electrostatic attraction of the samples to negatively charged surfaces, accompanied by sample instability. PDI results depicted size diameters ranging from 800 to 1800 nm, indicating strong polydispersity with multiple size populations.
This research demonstrated that collagen can be successfully fabricated into nanoparticles with sizes smaller than 100 nm.
胶原蛋白是一种广泛应用于皮肤组织工程的天然生物材料聚合物,通过低温研磨可创新地加工成纳米胶原,从而有可能增强皮肤组织的愈合能力。虽然已经有各种制造纳米胶原的方法,但目前还没有研究通过低温研磨制造纳米胶原,特别是使用氧化石墨烯作为隔离物来防止团聚。
本研究使用低温研磨创建了三个研究小组:纯纳米胶原(Pure NC)、含 0.005%氧化石墨烯的纳米胶原(NC+0.005%GO)和含 0.01%氧化石墨烯的纳米胶原(NC+0.01%GO)。特性分析包括透射电子显微镜(TEM)、扫描电子显微镜(SEM)、傅里叶变换红外(FTIR)光谱、X 射线衍射(XRD)、Zeta 电位(ZP)和多分散指数(PDI)。
TEM 和 SEM 分析表明,单独的纳米胶原组表现出小于 100nm 的颗粒大小。FTIR 光谱研究表明,所有纳米胶原研究组均存在酰胺 A、B 和 I、II 和 III(1800 至 800cm),特征 C-O-C 伸缩表明氧化石墨烯(GO)的存在。XRD 数据显示,随着 GO 比例从纯 NC 增加到含 GO 的纳米胶原组,主要峰变宽。Zeta 电位测量表明样品对带负电荷的表面有静电吸引力,同时样品不稳定。PDI 结果描述了直径在 800 至 1800nm 之间的大小直径,表明存在强烈的多分散性和多个大小群体。
本研究表明,胶原蛋白可以成功地制造出尺寸小于 100nm 的纳米颗粒。