Suppr超能文献

运用概念图来识别社区合作伙伴和研究人员对社会正义的认知:消除慢性病差距的途径。

Using Concept Mapping to Identify Community Partners' and Researchers' Perceptions of Social Justice: A Path Toward Eliminating Chronic Disease Disparities.

作者信息

Soule Eric K, Jones Dina M, Lovelady Nakita, Thomas Luke, Du Ruofei, Prewitt Theresa E, Taylor Elizabeth, Baker Sydney, Guy Mignonne C, Cornell Carol E, Fagan Pebbles

机构信息

Department of Health Education and Promotion, East Carolina University, Greenville, North Carolina, USA.

Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.

出版信息

Health Equity. 2024 Jun 27;8(1):426-436. doi: 10.1089/heq.2023.0230. eCollection 2024.

Abstract

BACKGROUND

A social justice framework can be used to inform healthy equity-focused research, and operationalizing social justice can inform strategic planning for research and practice models. This study aimed to develop a working definition of social justice based on input from a diverse group of collaborators to better inform the work conducted within the Center for Research, Health, and Social Justice.

METHODS

A concept mapping study was conducted from March to May 2022. A prompt designed to elicit social justice themes was developed (phase 1). At a study website, participants brainstormed statements that represented their definition of social justice (phase 2). Participants then sorted statements based on similarity and rated statements on importance (phase 3). Multidimensional scaling and hierarchical cluster analysis were used to identify nonoverlapping thematic clusters of statements (phase 4). Models were reviewed for best fit, and clusters were assigned names based on theme (phase 5).

RESULTS

Participants ( = 49) generated 52 unique statements that were sorted into 5 clusters describing social justice themes. Clusters included (1) Empathy, Awareness, and Understanding ( = 11); (2) Education and Systems Change ( = 10); (3) Policy Design and Implementation ( = 9); (4) Equity and Leveling the Playing Field ( = 11); and (5) Access to Services and Fair Living Standard ( = 11). High mean cluster ratings ranging from 5.22 to 6.02 out of 7 indicated all clusters were rated as being very important aspects of social justice.

CONCLUSIONS

These data can guide the restructuring of research ecosystems that help eliminate race- and place-based health disparities.

摘要

背景

社会正义框架可用于指导以健康公平为重点的研究,而实施社会正义可为研究和实践模式的战略规划提供信息。本研究旨在根据来自不同合作群体的意见,制定社会正义的实用定义,以更好地指导研究、健康与社会正义中心开展的工作。

方法

于2022年3月至5月进行了一项概念映射研究。制定了一个旨在引出社会正义主题的提示(第1阶段)。在一个研究网站上,参与者集思广益,提出代表他们对社会正义定义的陈述(第2阶段)。然后,参与者根据相似性对陈述进行分类,并对陈述的重要性进行评分(第3阶段)。使用多维尺度分析和层次聚类分析来识别陈述的不重叠主题聚类(第4阶段)。对模型进行审查以确定最佳拟合,并根据主题为聚类命名(第5阶段)。

结果

参与者(n = 49)生成了52条独特的陈述,这些陈述被分为5个描述社会正义主题的聚类。聚类包括:(1)同理心、意识和理解(n = 11);(2)教育与系统变革(n = 10);(3)政策设计与实施(n = 9);(4)公平与公平竞争环境(n = 11);以及(5)获得服务和公平生活标准(n = 11)。7分制下平均聚类评分较高,范围从5.22到6.02,表明所有聚类都被评为社会正义的非常重要的方面。

结论

这些数据可为有助于消除基于种族和地域的健康差距的研究生态系统的重组提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ac/11249129/d621b5713951/heq.2023.0230_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验