Suppr超能文献

基于矩闭合和仿真器的空间 SIR 过程的高斯过程逼近。

A Gaussian-process approximation to a spatial SIR process using moment closures and emulators.

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC, 27607, United States.

Department of Statistics and Data Science, Cornell University, Ithaca, NY, 14853, United States.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae068.

Abstract

The dynamics that govern disease spread are hard to model because infections are functions of both the underlying pathogen as well as human or animal behavior. This challenge is increased when modeling how diseases spread between different spatial locations. Many proposed spatial epidemiological models require trade-offs to fit, either by abstracting away theoretical spread dynamics, fitting a deterministic model, or by requiring large computational resources for many simulations. We propose an approach that approximates the complex spatial spread dynamics with a Gaussian process. We first propose a flexible spatial extension to the well-known SIR stochastic process, and then we derive a moment-closure approximation to this stochastic process. This moment-closure approximation yields ordinary differential equations for the evolution of the means and covariances of the susceptibles and infectious through time. Because these ODEs are a bottleneck to fitting our model by MCMC, we approximate them using a low-rank emulator. This approximation serves as the basis for our hierarchical model for noisy, underreported counts of new infections by spatial location and time. We demonstrate using our model to conduct inference on simulated infections from the underlying, true spatial SIR jump process. We then apply our method to model counts of new Zika infections in Brazil from late 2015 through early 2016.

摘要

控制疾病传播的动态很难建模,因为感染是病原体以及人类或动物行为的函数。当模拟疾病在不同空间位置之间传播时,这个挑战会增加。许多提出的空间流行病学模型需要权衡取舍,要么通过抽象理论传播动态、拟合确定性模型,要么需要大量模拟的计算资源。我们提出了一种用高斯过程来近似复杂的空间传播动态的方法。我们首先对著名的 SIR 随机过程进行灵活的空间扩展,然后推导出这个随机过程的矩闭逼近。这个矩闭逼近通过时间的变化给出了易感者和传染性的平均值和协方差的常微分方程。因为这些 ODE 是通过 MCMC 拟合我们模型的瓶颈,所以我们使用低秩模拟器来近似它们。这个近似作为我们的层次模型的基础,用于对空间位置和时间的新感染的嘈杂、漏报计数进行建模。我们使用我们的模型来对基础真实空间 SIR 跳跃过程中的模拟感染进行推理。然后,我们将我们的方法应用于模拟 2015 年底至 2016 年初巴西新寨卡感染的病例数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef30/11261348/93302c6ded59/ujae068fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验