Suppr超能文献

SDePER:一种基于空间条形码转录组数据的混合机器学习和回归方法,用于细胞类型去卷积。

SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data.

机构信息

Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.

SJTU-Yale Join Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Genome Biol. 2024 Oct 14;25(1):271. doi: 10.1186/s13059-024-03416-2.

Abstract

Spatial barcoding-based transcriptomic (ST) data require deconvolution for cellular-level downstream analysis. Here we present SDePER, a hybrid machine learning and regression method to deconvolve ST data using reference single-cell RNA sequencing (scRNA-seq) data. SDePER tackles platform effects between ST and scRNA-seq data, ensuring a linear relationship between them while addressing sparsity and spatial correlations in cell types across capture spots. SDePER estimates cell-type proportions, enabling enhanced resolution tissue mapping by imputing cell-type compositions and gene expressions at unmeasured locations. Applications to simulated data and four real datasets showed SDePER's superior accuracy and robustness over existing methods.

摘要

基于空间条形码的转录组学(ST)数据需要进行去卷积,以便进行细胞水平的下游分析。在这里,我们提出了 SDePER,这是一种混合机器学习和回归方法,用于使用参考单细胞 RNA 测序(scRNA-seq)数据对 ST 数据进行去卷积。SDePER 解决了 ST 和 scRNA-seq 数据之间的平台效应,确保了它们之间的线性关系,同时解决了细胞类型在捕获点之间的稀疏性和空间相关性。SDePER 估计细胞类型的比例,通过在未测量的位置内插细胞类型组成和基因表达,实现了增强分辨率的组织映射。在模拟数据和四个真实数据集上的应用表明,SDePER 在准确性和鲁棒性方面优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e51/11475911/69e224d03363/13059_2024_3416_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验