Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
SJTU-Yale Join Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
Genome Biol. 2024 Oct 14;25(1):271. doi: 10.1186/s13059-024-03416-2.
Spatial barcoding-based transcriptomic (ST) data require deconvolution for cellular-level downstream analysis. Here we present SDePER, a hybrid machine learning and regression method to deconvolve ST data using reference single-cell RNA sequencing (scRNA-seq) data. SDePER tackles platform effects between ST and scRNA-seq data, ensuring a linear relationship between them while addressing sparsity and spatial correlations in cell types across capture spots. SDePER estimates cell-type proportions, enabling enhanced resolution tissue mapping by imputing cell-type compositions and gene expressions at unmeasured locations. Applications to simulated data and four real datasets showed SDePER's superior accuracy and robustness over existing methods.
基于空间条形码的转录组学(ST)数据需要进行去卷积,以便进行细胞水平的下游分析。在这里,我们提出了 SDePER,这是一种混合机器学习和回归方法,用于使用参考单细胞 RNA 测序(scRNA-seq)数据对 ST 数据进行去卷积。SDePER 解决了 ST 和 scRNA-seq 数据之间的平台效应,确保了它们之间的线性关系,同时解决了细胞类型在捕获点之间的稀疏性和空间相关性。SDePER 估计细胞类型的比例,通过在未测量的位置内插细胞类型组成和基因表达,实现了增强分辨率的组织映射。在模拟数据和四个真实数据集上的应用表明,SDePER 在准确性和鲁棒性方面优于现有方法。