Suppr超能文献

用于靶向癌症成像的DNA折纸工程化等离子体纳米探针

DNA Origami-Engineered Plasmonic Nanoprobes for Targeted Cancer Imaging.

作者信息

Wu Lintong, Tanwar Swati, Kaur Gagandeep, Date Siddhi, Goel Linika, Chatterjee Arnab, McGuiggan Patty, Barman Ishan

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Maryland 21218, USA.

Department of Biomedical Engineering, Johns Hopkins University, Maryland 21218, USA.

出版信息

Adv Funct Mater. 2024 Jul 24;34(30). doi: 10.1002/adfm.202309929. Epub 2024 Mar 10.

Abstract

Plasmonic nanomaterials bearing targeting ligands are of great interest for surface-enhanced Raman scattering (SERS)-based bioimaging applications. However, the practical utility of SERS-based imaging strategies has been hindered by the lack of a straightforward method to synthesize highly sensitive SERS-active nanostructures with high yield and efficiency. In this work, leveraging DNA origami principles, we report the first-in-class design of a SERS-based plasmonically coupled nanoprobe for targeted cancer imaging (SPECTRA). The nanoprobe harnesses a cancer cell targeting DNA aptamer sequence and vibrational tag with stretching frequency in the cell-silent Raman window. Through the integration of aptamer sequence specific for DU145 cells, we show the unique capabilities of SPECTRA for targeted imaging of DU145 cells. Our results demonstrate that the scalability, cost-effectiveness, and reproducibility of this method of fabrication of SERS nanoprobes can serve as a versatile platform for creating nanoprobes with broad applications in the fields of cancer biology and biomedical imaging.

摘要

带有靶向配体的等离子体纳米材料在基于表面增强拉曼散射(SERS)的生物成像应用中备受关注。然而,基于SERS的成像策略的实际应用受到了阻碍,因为缺乏一种直接的方法来高产率、高效率地合成高灵敏度的SERS活性纳米结构。在这项工作中,我们利用DNA折纸原理,报告了用于靶向癌症成像的基于SERS的等离子体耦合纳米探针(SPECTRA)的首创设计。该纳米探针利用癌细胞靶向DNA适配体序列和在细胞沉默拉曼窗口具有拉伸频率的振动标签。通过整合针对DU145细胞的适配体序列,我们展示了SPECTRA对DU145细胞进行靶向成像的独特能力。我们的结果表明,这种制造SERS纳米探针的方法的可扩展性、成本效益和可重复性可作为一个通用平台,用于创建在癌症生物学和生物医学成像领域具有广泛应用的纳米探针。

相似文献

1
DNA Origami-Engineered Plasmonic Nanoprobes for Targeted Cancer Imaging.
Adv Funct Mater. 2024 Jul 24;34(30). doi: 10.1002/adfm.202309929. Epub 2024 Mar 10.
2
Stimuli-responsive 'On-Off' SERS-darkfield bimodal plasmonic nanoprobes for selective cancer cell illumination.
Biosens Bioelectron. 2025 Oct 15;286:117615. doi: 10.1016/j.bios.2025.117615. Epub 2025 May 21.
4
GenomicGapID: leveraging spatial distribution of conserved genomic sites for broad-spectrum microbial identification.
Microbiol Spectr. 2025 May 6;13(5):e0281724. doi: 10.1128/spectrum.02817-24. Epub 2025 Mar 14.
6
Machine learning (ML)-assisted surface-enhanced raman spectroscopy (SERS) technologies for sustainable health.
Adv Colloid Interface Sci. 2025 Jul 5;344:103594. doi: 10.1016/j.cis.2025.103594.
7
DNA Origami Plasmonic Nanoantenna for Programmable Biosensing of Multiple Cytokines in Cancer Immunotherapy.
Anal Chem. 2024 Jun 11;96(23):9684-9692. doi: 10.1021/acs.analchem.4c01626. Epub 2024 May 28.
8
Surface-Enhanced Raman Scattering Nanotags: Design Strategies, Biomedical Applications, and Integration of Machine Learning.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2025 May-Jun;17(3):e70015. doi: 10.1002/wnan.70015.
9
10
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.
Acc Chem Res. 2025 Jul 1;58(13):1951-1962. doi: 10.1021/acs.accounts.5c00126. Epub 2025 Jun 9.

引用本文的文献

1
Stimuli-responsive 'On-Off' SERS-darkfield bimodal plasmonic nanoprobes for selective cancer cell illumination.
Biosens Bioelectron. 2025 Oct 15;286:117615. doi: 10.1016/j.bios.2025.117615. Epub 2025 May 21.
2
SERS-Active Micro/Nanomachines for Biosensing.
Biosensors (Basel). 2025 Feb 16;15(2):115. doi: 10.3390/bios15020115.
3
Tailoring DNA Origami Protection: A Study of Oligolysine-PEG Coatings for Improved Colloidal, Structural, and Functional Integrity.
ACS Polym Au. 2024 Dec 20;5(1):35-44. doi: 10.1021/acspolymersau.4c00085. eCollection 2025 Feb 12.
4
Raman Imaging of Targeted Drug Delivery with DNA-Based Nano-Optical Devices.
Small. 2024 Dec 20:e2402631. doi: 10.1002/smll.202402631.

本文引用的文献

1
A Smart Intracellular Self-Assembling Bioorthogonal Raman Active Nanoprobe for Targeted Tumor Imaging.
Adv Sci (Weinh). 2023 Dec;10(34):e2304164. doi: 10.1002/advs.202304164. Epub 2023 Sep 15.
2
Targeted Enzyme Activity Imaging with Quantitative Phase Microscopy.
Nano Lett. 2023 May 24;23(10):4602-4608. doi: 10.1021/acs.nanolett.3c01090. Epub 2023 May 8.
3
Recent Advances in DNA Origami-Engineered Nanomaterials and Applications.
Chem Rev. 2023 Apr 12;123(7):3976-4050. doi: 10.1021/acs.chemrev.3c00028. Epub 2023 Mar 29.
5
Raman Spectroscopy for Chemical Biology Research.
J Am Chem Soc. 2022 Nov 2;144(43):19651-19667. doi: 10.1021/jacs.2c05359. Epub 2022 Oct 10.
6
Bringing Vibrational Imaging to Chemical Biology with Molecular Probes.
ACS Chem Biol. 2022 Jul 15;17(7):1621-1637. doi: 10.1021/acschembio.2c00200. Epub 2022 Jun 30.
7
Surface-enhanced Raman scattering: An emerging tool for sensing cellular function.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jul;14(4):e1802. doi: 10.1002/wnan.1802. Epub 2022 May 5.
8
Quantum tunneling effect on the surface enhanced Raman process in molecular systems.
Opt Express. 2022 Feb 14;30(4):4845-4855. doi: 10.1364/OE.450918.
9
Broadband SERS Enhancement by DNA Origami Assembled Bimetallic Nanoantennas with Label-Free Single Protein Sensing.
J Phys Chem Lett. 2021 Aug 26;12(33):8141-8150. doi: 10.1021/acs.jpclett.1c02272. Epub 2021 Aug 19.
10
A Versatile DNA Origami-Based Plasmonic Nanoantenna for Label-Free Single-Molecule Surface-Enhanced Raman Spectroscopy.
ACS Nano. 2021 Apr 27;15(4):7065-7077. doi: 10.1021/acsnano.1c00188. Epub 2021 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验