Department of Computer Science and Artificial Intelligence, College of Computing, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
Department of Computer Science and Engineering, University College of Engineering, A Constituent College of Anna University, Thirukkuvalai, Chennai, India.
Sci Rep. 2024 Aug 17;14(1):19109. doi: 10.1038/s41598-024-70117-y.
The second most common type of malignant tumor worldwide is colorectal cancer. Histopathology image analysis offers crucial data for the clinical diagnosis of colorectal cancer. Currently, deep learning techniques are applied to enhance cancer classification and tumor localization in histopathological image analysis. Moreover, traditional deep learning techniques might loss integrated information in the image while evaluating thousands of patches recovered from whole slide images (WSIs). This research proposes a novel colorectal cancer detection network (CCDNet) that combines coordinate attention transformer with atrous convolution. CCDNet first denoises the input histopathological image using a Wiener based Midpoint weighted non-local means filter (WMW-NLM) for guaranteeing precise diagnoses and maintain image features. Also, a novel atrous convolution with coordinate attention transformer (AConvCAT) is introduced, which successfully combines the advantages of two networks to classify colorectal tissue at various scales by capturing local and global information. Further, coordinate attention model is integrated with a Cross-shaped window (CrSWin) transformer for capturing tiny changes in colorectal tissue from multiple angles. The proposed CCDNet achieved accuracy rates of 98.61% and 98.96%, on the colorectal histological image and NCT-CRC-HE-100 K datasets correspondingly. The comparison analysis demonstrates that the suggested framework performed better than the most advanced methods already in use. In hospitals, clinicians can use the proposed CCDNet to verify the diagnosis.
全球第二常见的恶性肿瘤是结直肠癌。组织病理学图像分析为结直肠癌的临床诊断提供了关键数据。目前,深度学习技术被应用于增强组织病理学图像分析中的癌症分类和肿瘤定位。此外,传统的深度学习技术在评估从全切片图像(WSI)中提取的数千个斑块时,可能会丢失图像中的综合信息。本研究提出了一种结合坐标注意力转换器和空洞卷积的新型结直肠癌检测网络(CCDNet)。CCDNet 首先使用基于 Wiener 的中点加权非局部均值滤波器(WMW-NLM)对输入的组织病理学图像进行去噪,以保证精确诊断并保留图像特征。此外,还引入了一种带有坐标注意力转换器的新型空洞卷积(AConvCAT),它成功地结合了两个网络的优势,通过捕获局部和全局信息来对不同尺度的结直肠组织进行分类。进一步地,坐标注意力模型与十字形窗口(CrSWin)转换器集成,从多个角度捕捉结直肠组织的微小变化。在结直肠组织学图像和 NCT-CRC-HE-100K 数据集上,所提出的 CCDNet 分别达到了 98.61%和 98.96%的准确率。对比分析表明,所提出的框架比现有的最先进方法表现更好。在医院中,临床医生可以使用所提出的 CCDNet 来验证诊断。