Suppr超能文献

利用系统进化分析和溯源分析在埃塞俄比亚哈拉尔市和克萨区进行疫情监测。

Outbreak detection in Harar town and Kersa district, Ethiopia using phylogenetic analysis and source attribution.

机构信息

National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.

School of Biological Sciences and Biotechnology, Haramaya University, Dire Dawa, Ethiopia.

出版信息

BMC Infect Dis. 2024 Aug 26;24(1):864. doi: 10.1186/s12879-024-09800-4.

Abstract

BACKGROUND

Foodborne diseases (FBDs) represent a significant risk to public health, with nearly one in ten people falling ill every year globally. The large incidence of foodborne diseases in African low- and middle-income countries (LMIC) shows the immediate need for action, but there is still far to a robust and efficient outbreak detection system. The detection of outbreak heavily relies on clinical diagnosis, which are often delayed or ignored due to resource limitations and inadequate surveillance systems.

METHODS

In total, 68 samples of non-typhoidal Salmonella isolates from human, animal and environmental sources collected between November 2021 and January 2023 were analyzed using sequencing methods to infer phylogenetic relationships between the samples. A source attribution model using a machine-learning logit-boost that predicted the likely source of infection for 20 cases of human salmonellosis was also run and compared with the results of the cluster detection.

RESULTS

Three clusters of samples with close relation (SNP difference < 30) were identified as non-typhoidal Salmonella in Harar town and Kersa district, Ethiopia. These three clusters were comprised of isolates from different sources, including at least two human isolates. The isolates within each cluster showed identical serovar and sequence type (ST), with few exceptions in cluster 3. The close proximity of the samples suggested the occurrence of three potential outbreaks of non-typhoidal Salmonella in the region. The results of the source attribution model found that human cases of salmonellosis could primarily be attributed to bovine meat, which the results of the phylogenetic analysis corroborated.

CONCLUSIONS

The findings of this study suggested the occurrence of three possible outbreaks of non-typhoidal Salmonella in eastern Ethiopia, emphasizing the importance of targeted intervention of food safety protocols in LMICs. It also highlighted the potential of integrated surveillance for detecting outbreak and identifying the most probable source. Source attribution models in combination with other epidemiological methods is recommended as part of a more robust and integrated surveillance system for foodborne diseases.

摘要

背景

食源性疾病(FBDs)对公众健康构成重大风险,全球每年近十分之一的人患病。非洲低收入和中等收入国家(LMIC)中食源性疾病的高发病率表明需要立即采取行动,但仍然缺乏强大而有效的疫情检测系统。疫情的检测严重依赖于临床诊断,但由于资源限制和监测系统不足,临床诊断经常延迟或被忽视。

方法

共分析了 2021 年 11 月至 2023 年 1 月期间从人类、动物和环境来源采集的 68 份非伤寒沙门氏菌分离株样本,使用测序方法推断样本之间的系统发育关系。还运行了一种使用机器学习对数回归增强的源归因模型,预测了 20 例人类沙门氏菌病的可能感染源,并与聚类检测结果进行了比较。

结果

在埃塞俄比亚哈拉尔镇和克萨区鉴定出三个具有密切关系的样本群(SNP 差异<30),为非伤寒沙门氏菌。这三个群由来自不同来源的分离株组成,包括至少两个人类分离株。每个群内的分离株均具有相同的血清型和序列型(ST),但在群 3 中存在少数例外。样本的接近程度表明该地区发生了三起非伤寒沙门氏菌潜在暴发。源归因模型的结果表明,人类沙门氏菌病病例主要可归因于牛肉,这与系统发育分析的结果相符。

结论

本研究结果表明,在埃塞俄比亚东部发生了三起可能的非伤寒沙门氏菌暴发,强调了在中低收入国家实施食品安全协议的针对性干预的重要性。它还突出了综合监测在检测疫情和确定最可能来源方面的潜力。建议将源归因模型与其他流行病学方法结合起来,作为更强大和综合的食源性疾病监测系统的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a57a/11348558/e04f0f6472ad/12879_2024_9800_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验