Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Sci Rep. 2024 Sep 2;14(1):20414. doi: 10.1038/s41598-024-71235-3.
Glaucoma is a group of neurodegenerative diseases that can lead to irreversible blindness. Yet, the progression can be slowed down if diagnosed and treated early enough. Optical coherence tomography angiography (OCTA) can non-invasively provide valuable information about the retinal microcirculation that has shown to be correlated with the onset of the disease. The vessel density (VD) is the most commonly used biomarker to quantify this vascular information. However, different studies showed that there is a great impact of the acquisition area on the performance of the VD to distinguish between glaucoma patients and a healthy control group. It also seems that the separate capillary plexuses are differently affected by the disease and therefore also influence the results. So in this study we investigate the impact of the acquisition area (3 3 macular scan, 6.44 6.4 macular scan, 6 6 optic nerve head (ONH) scan) and the different plexuses on the machine-learning-based distinction between glaucoma patients and healthy controls. The results yielded that the 6 6 ONH show the best performance over all plexuses. Moreover the deep learning-based approach outperforms the VD as a biomarker on every acquisition area and plexus. In addition to that, it also performs better than traditional biomarkers obtained from the OCT scans that are used in the clinical routine for diagnosis and progression tracking of glaucoma. Consequently, OCTA scans of the ONH might be a useful addition to OCT when studying glaucoma.
青光眼是一组神经退行性疾病,可导致不可逆转的失明。然而,如果及早诊断和治疗,病情可以得到减缓。光学相干断层扫描血管造影术(OCTA)可以无创地提供有关视网膜微循环的有价值信息,这些信息已被证明与疾病的发生有关。血管密度(VD)是最常用的生物标志物,用于量化血管信息。然而,不同的研究表明,采集区域对视血管密度区分青光眼患者和健康对照组的性能有很大的影响。似乎不同的毛细血管丛也受到疾病的不同影响,因此也会影响结果。因此,在这项研究中,我们研究了采集区域(3 3 黄斑扫描、6.44 6.4 黄斑扫描、6 6 视神经头(ONH)扫描)和不同丛对基于机器学习的青光眼患者和健康对照组区分的影响。结果表明,在所有丛中,6 6 ONH 的性能最佳。此外,基于深度学习的方法在每个采集区域和丛上都优于作为生物标志物的 VD。除此之外,它还优于用于青光眼诊断和进展跟踪的临床常规中的 OCT 扫描获得的传统生物标志物。因此,在研究青光眼时,ONH 的 OCTA 扫描可能是 OCT 的有用补充。