Li Shumin, Ma Jiajun, Zhao Tianyi, Jia Yuran, Liu Bo, Luo Ruibang, Huang Yuanhua
Department of Computer Science, The University of Hong Kong, Hong Kong, China.
Division of Emerging Interdisciplinary Areas, Hong Kong University of Science and Technology, Hong Kong, China.
Patterns (N Y). 2024 Jul 9;5(8):101022. doi: 10.1016/j.patter.2024.101022. eCollection 2024 Aug 9.
A vast amount of single-cell RNA sequencing (SC) data have been accumulated via various studies and consortiums, but the lack of spatial information limits its analysis of complex biological activities. To bridge this gap, we introduce CellContrast, a computational method for reconstructing spatial relationships among SC cells from spatial transcriptomics (ST) reference. By adopting a contrastive learning framework and training with ST data, CellContrast projects gene expressions into a hidden space where proximate cells share similar representation values. We performed extensive benchmarking on diverse platforms, including SeqFISH, Stereo-seq, 10X Visium, and MERSCOPE, on mouse embryo and human breast cells. The results reveal that CellContrast substantially outperforms other related methods, facilitating accurate spatial reconstruction of SC. We further demonstrate CellContrast's utility by applying it to cell-type co-localization and cell-cell communication analysis with real-world SC samples, proving the recovered cell locations empower more discoveries and mitigate potential false positives.
通过各种研究和联盟已经积累了大量的单细胞RNA测序(SC)数据,但缺乏空间信息限制了其对复杂生物活动的分析。为了弥补这一差距,我们引入了CellContrast,这是一种从空间转录组学(ST)参考中重建SC细胞间空间关系的计算方法。通过采用对比学习框架并使用ST数据进行训练,CellContrast将基因表达投影到一个隐藏空间中,其中相邻细胞共享相似的表示值。我们在包括SeqFISH、Stereo-seq、10X Visium和MERSCOPE在内的多种平台上,对小鼠胚胎和人类乳腺细胞进行了广泛的基准测试。结果表明,CellContrast显著优于其他相关方法,有助于准确地对SC进行空间重建。我们通过将其应用于真实世界的SC样本的细胞类型共定位和细胞间通信分析,进一步证明了CellContrast的实用性,证明恢复的细胞位置能够带来更多发现并减少潜在的假阳性。