Suppr超能文献

示意图:亚微米分辨率空间转录组学的可扩展无分割分析。

FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics.

机构信息

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Department of Genetics, Harvard Medical School, Boston, MA, USA.

出版信息

Nat Methods. 2024 Oct;21(10):1843-1854. doi: 10.1038/s41592-024-02415-2. Epub 2024 Sep 12.

Abstract

Spatial transcriptomics (ST) technologies have advanced to enable transcriptome-wide gene expression analysis at submicron resolution over large areas. However, analysis of high-resolution ST is often challenged by complex tissue structure, where existing cell segmentation methods struggle due to the irregular cell sizes and shapes, and by the absence of segmentation-free methods scalable to whole-transcriptome analysis. Here we present FICTURE (Factor Inference of Cartographic Transcriptome at Ultra-high REsolution), a segmentation-free spatial factorization method that can handle transcriptome-wide data labeled with billions of submicron-resolution spatial coordinates and is compatible with both sequencing-based and imaging-based ST data. FICTURE uses the multilayered Dirichlet model for stochastic variational inference of pixel-level spatial factors, and is orders of magnitude more efficient than existing methods. FICTURE reveals the microscopic ST architecture for challenging tissues, such as vascular, fibrotic, muscular and lipid-laden areas in real data where previous methods failed. FICTURE's cross-platform generality, scalability and precision make it a powerful tool for exploring high-resolution ST.

摘要

空间转录组学 (ST) 技术已经取得了进展,能够在亚微米分辨率的大面积范围内进行全转录组基因表达分析。然而,高分辨率 ST 的分析常常受到复杂组织结构的挑战,由于细胞大小和形状不规则,现有的细胞分割方法存在困难,并且缺乏可扩展到全转录组分析的无分割方法。在这里,我们提出了 FICTURE(超高分辨率地图转录组的因子推断),这是一种无分割的空间因子化方法,可以处理标记有数十亿个亚微米分辨率空间坐标的全转录组数据,并且与基于测序和基于成像的 ST 数据兼容。FICTURE 使用多层狄利克雷模型进行像素级空间因子的随机变分推断,效率比现有方法高出几个数量级。FICTURE 揭示了具有挑战性的组织的微观 ST 结构,例如真实数据中血管、纤维化、肌肉和富含脂质的区域,而以前的方法在此类区域无法使用。FICTURE 的跨平台通用性、可扩展性和精度使其成为探索高分辨率 ST 的强大工具。

相似文献

3
Computational solutions for spatial transcriptomics.空间转录组学的计算解决方案。
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.
9
Nova-ST: Nano-patterned ultra-dense platform for spatial transcriptomics.Nova-ST:用于空间转录组学的纳米图案超密集平台。
Cell Rep Methods. 2024 Aug 19;4(8):100831. doi: 10.1016/j.crmeth.2024.100831. Epub 2024 Aug 6.

引用本文的文献

本文引用的文献

1
The dawn of spatial omics.空间组学的黎明。
Science. 2023 Aug 4;381(6657):eabq4964. doi: 10.1126/science.abq4964.
10
Squidpy: a scalable framework for spatial omics analysis.鱿鱼皮:一种用于空间组学分析的可扩展框架。
Nat Methods. 2022 Feb;19(2):171-178. doi: 10.1038/s41592-021-01358-2. Epub 2022 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验