School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou, 325027, China.
School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, 519087, China.
BMC Biol. 2024 Oct 8;22(1):226. doi: 10.1186/s12915-024-02028-3.
Drug repurposing is a promising approach in the field of drug discovery owing to its efficiency and cost-effectiveness. Most current drug repurposing models rely on specific datasets for training, which limits their predictive accuracy and scope. The number of both market-approved and experimental drugs is vast, forming an extensive molecular space. Due to limitations in parameter size and data volume, traditional drug-target interaction (DTI) prediction models struggle to generalize well within such a broad space. In contrast, large language models (LLMs), with their vast parameter sizes and extensive training data, demonstrate certain advantages in drug repurposing tasks. In our research, we introduce a novel drug repurposing framework, DrugReAlign, based on LLMs and multi-source prompt techniques, designed to fully exploit the potential of existing drugs efficiently. Leveraging LLMs, the DrugReAlign framework acquires general knowledge about targets and drugs from extensive human knowledge bases, overcoming the data availability limitations of traditional approaches. Furthermore, we collected target summaries and target-drug space interaction data from databases as multi-source prompts, substantially improving LLM performance in drug repurposing. We validated the efficiency and reliability of the proposed framework through molecular docking and DTI datasets. Significantly, our findings suggest a direct correlation between the accuracy of LLMs' target analysis and the quality of prediction outcomes. These findings signify that the proposed framework holds the promise of inaugurating a new paradigm in drug repurposing.
药物重定位在药物发现领域是一种很有前途的方法,因为它具有效率高和成本效益好的特点。目前大多数药物重定位模型都依赖于特定的数据集进行训练,这限制了它们的预测准确性和范围。市场批准和实验药物的数量庞大,形成了广泛的分子空间。由于参数大小和数据量的限制,传统的药物-靶标相互作用(DTI)预测模型在如此广泛的空间中很难很好地泛化。相比之下,具有大规模参数和广泛训练数据的大型语言模型(LLMs)在药物重定位任务中具有一定的优势。在我们的研究中,我们引入了一种新的基于 LLM 和多源提示技术的药物重定位框架 DrugReAlign,旨在有效地充分利用现有药物的潜力。利用 LLM,DrugReAlign 框架从广泛的人类知识库中获取关于靶标和药物的一般知识,克服了传统方法中数据可用性的限制。此外,我们从数据库中收集了靶标摘要和靶标-药物空间相互作用数据作为多源提示,大大提高了 LLM 在药物重定位中的性能。我们通过分子对接和 DTI 数据集验证了所提出框架的效率和可靠性。重要的是,我们的研究结果表明,LLM 对靶标分析的准确性与预测结果的质量之间存在直接的相关性。这些发现表明,所提出的框架有望开创药物重定位的新范式。