Suppr超能文献

用于神经影像预测模型中可解释子队列分析的谱图样本加权

Spectral Graph Sample Weighting for Interpretable Sub-cohort Analysis in Predictive Models for Neuroimaging.

作者信息

Paschali Magdalini, Jiang Yu Hang, Siegel Spencer, Gonzalez Camila, Pohl Kilian M, Chaudhari Akshay, Zhao Qingyu

机构信息

Department of Radiology, Stanford University, Stanford, CA, USA.

Department of Statistics, Stanford University, Stanford, USA.

出版信息

Predict Intell Med. 2025;15155:24-34. doi: 10.1007/978-3-031-74561-4_3. Epub 2024 Oct 18.

Abstract

Recent advancements in medicine have confirmed that brain disorders often comprise multiple subtypes of mechanisms, developmental trajectories, or severity levels. Such heterogeneity is often associated with demographic aspects (e.g., sex) or disease-related contributors (e.g., genetics). Thus, the predictive power of machine learning models used for symptom prediction varies across subjects based on such factors. To model this heterogeneity, one can assign each training sample a factor-dependent weight, which modulates the subject's contribution to the overall objective loss function. To this end, we propose to model the subject weights as a linear combination of the eigenbases of a spectral population graph that captures the similarity of factors across subjects. In doing so, the learned weights smoothly vary across the graph, highlighting sub-cohorts with high and low predictability. Our proposed sample weighting scheme is evaluated on two tasks. First, we predict initiation of heavy alcohol drinking in young adulthood from imaging and neuropsychological measures from the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA). Next, we detect Dementia . Mild Cognitive Impairment (MCI) using imaging and demographic measurements in subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Compared to existing sample weighting schemes, our sample weights improve interpretability and highlight sub-cohorts with distinct characteristics and varying model accuracy.

摘要

医学领域的最新进展证实,脑部疾病通常包含多种机制、发育轨迹或严重程度的亚型。这种异质性通常与人口统计学因素(如性别)或疾病相关因素(如遗传学)有关。因此,用于症状预测的机器学习模型的预测能力会因这些因素在不同个体间有所差异。为了对这种异质性进行建模,可以为每个训练样本分配一个依赖于因素的权重,该权重会调节个体对整体目标损失函数的贡献。为此,我们建议将个体权重建模为一个谱总体图的特征基的线性组合,该图捕捉了个体间因素的相似性。这样做时,学习到的权重会在图上平滑变化,突出显示具有高预测性和低预测性的亚组。我们提出的样本加权方案在两项任务上进行了评估。首先,我们根据青少年酒精与神经发育全国联盟(NCANDA)的成像和神经心理学测量来预测青年期重度饮酒的开始情况。其次,我们利用阿尔茨海默病神经成像倡议(ADNI)中受试者的成像和人口统计学测量来检测痴呆症和轻度认知障碍(MCI)。与现有的样本加权方案相比,我们的样本权重提高了可解释性,并突出显示了具有不同特征和不同模型准确性的亚组。

相似文献

1
Spectral Graph Sample Weighting for Interpretable Sub-cohort Analysis in Predictive Models for Neuroimaging.
Predict Intell Med. 2025;15155:24-34. doi: 10.1007/978-3-031-74561-4_3. Epub 2024 Oct 18.
2
Modelling prognostic trajectories of cognitive decline due to Alzheimer's disease.
Neuroimage Clin. 2020;26:102199. doi: 10.1016/j.nicl.2020.102199. Epub 2020 Jan 26.
3
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.
Neuroimage Clin. 2019;23:101929. doi: 10.1016/j.nicl.2019.101929. Epub 2019 Jul 4.
4
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
5
Self-supervised learning of neighborhood embedding for longitudinal MRI.
Med Image Anal. 2022 Nov;82:102571. doi: 10.1016/j.media.2022.102571. Epub 2022 Aug 27.
10
Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction.
Med Image Anal. 2021 Apr;69:101947. doi: 10.1016/j.media.2020.101947. Epub 2020 Dec 31.

本文引用的文献

1
Identifying high school risk factors that forecast heavy drinking onset in understudied young adults.
Dev Cogn Neurosci. 2024 Aug;68:101413. doi: 10.1016/j.dcn.2024.101413. Epub 2024 Jun 26.
2
One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry.
Biol Psychiatry. 2023 Apr 15;93(8):717-728. doi: 10.1016/j.biopsych.2022.09.024. Epub 2022 Sep 29.
3
Brain-phenotype models fail for individuals who defy sample stereotypes.
Nature. 2022 Sep;609(7925):109-118. doi: 10.1038/s41586-022-05118-w. Epub 2022 Aug 24.
4
Detecting negative valence symptoms in adolescents based on longitudinal self-reports and behavioral assessments.
J Affect Disord. 2022 Sep 1;312:30-38. doi: 10.1016/j.jad.2022.06.002. Epub 2022 Jun 8.
5
Shared functional connections within and between cortical networks predict cognitive abilities in adult males and females.
Hum Brain Mapp. 2022 Feb 15;43(3):1087-1102. doi: 10.1002/hbm.25709. Epub 2021 Nov 22.
6
Differential predictors for alcohol use in adolescents as a function of familial risk.
Transl Psychiatry. 2021 Mar 4;11(1):157. doi: 10.1038/s41398-021-01260-7.
7
Association of Klotho-VS Heterozygosity With Risk of Alzheimer Disease in Individuals Who Carry APOE4.
JAMA Neurol. 2020 Jul 1;77(7):849-862. doi: 10.1001/jamaneurol.2020.0414.
9
Early-onset Alzheimer Disease and Its Variants.
Continuum (Minneap Minn). 2019 Feb;25(1):34-51. doi: 10.1212/CON.0000000000000687.
10
Gender Differences in Risk Factors for Adolescent Binge Drinking and Implications for Intervention and Prevention.
Front Psychiatry. 2017 Dec 22;8:289. doi: 10.3389/fpsyt.2017.00289. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验