Suppr超能文献

PAPILA:用于青光眼评估的同一位患者双眼的眼底图像和临床数据数据集。

PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment.

机构信息

Universidad Politécnica de Cartagena, 30202, Cartagena, Spain.

Hospital General Universitario Reina Sofía, 30003, Murcia, Spain.

出版信息

Sci Data. 2022 Jun 9;9(1):291. doi: 10.1038/s41597-022-01388-1.

Abstract

Glaucoma is one of the ophthalmological diseases that frequently causes loss of vision in today's society. Previous studies assess which anatomical parameters of the optic nerve can be predictive of glaucomatous damage, but to date there is no test that by itself has sufficient sensitivity and specificity to diagnose this disease. This work provides a public dataset with medical data and fundus images of both eyes of the same patient. Segmentations of the cup and optic disc, as well as the labeling of the patients based on the evaluation of clinical data are also provided. The dataset has been tested with a neural network to classify healthy and glaucoma patients. Specifically, the ResNet-50 has been used as the basis to classify patients using information from each eye independently as well as using the joint information from both eyes of each patient. Results provide the baseline metrics, with the aim of promoting research in the early detection of glaucoma based on the joint analysis of both eyes of the same patient.

摘要

青光眼是当今社会中导致视力丧失的常见眼科疾病之一。以前的研究评估了视神经的哪些解剖参数可以预测青光眼损伤,但迄今为止,还没有一种测试能够单独具有足够的敏感性和特异性来诊断这种疾病。这项工作提供了一个公共数据集,其中包含同一患者的医疗数据和双眼眼底图像。还提供了杯和视盘的分割,以及基于临床数据评估的患者标记。该数据集已经使用神经网络进行了测试,以对健康和青光眼患者进行分类。具体来说,使用 ResNet-50 作为基础,使用来自每个眼睛的信息独立对患者进行分类,以及使用每个患者的双眼的联合信息对患者进行分类。结果提供了基线指标,旨在通过对同一患者的双眼联合分析来促进青光眼早期检测的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e2/9184612/3fddaefb465d/41597_2022_1388_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验