Suppr超能文献

基于预训练、数据增强和双流UNet的放疗前和放疗中期MRI的头颈部肿瘤分割

Head and Neck Tumor Segmentation of MRI from Pre- and Mid-Radiotherapy with Pre-Training, Data Augmentation and Dual Flow UNet.

作者信息

Wang Litingyu, Liao Wenjun, Zhang Shichuan, Wang Guotai

机构信息

University of Electronic Science and Technology of China, Chengdu, China.

Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Chengdu, China.

出版信息

Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:75-86. doi: 10.1007/978-3-031-83274-1_5. Epub 2025 Mar 3.

Abstract

Head and neck tumors and metastatic lymph nodes are crucial for treatment planning and prognostic analysis. Accurate segmentation and quantitative analysis of these structures require pixel-level annotation, making automated segmentation techniques essential for the diagnosis and treatment of head and neck cancer. In this study, we investigated the effects of multiple strategies on the segmentation of pre-radiotherapy (pre-RT) and mid-radiotherapy (mid-RT) images. For the segmentation of pre-RT images, we utilized: 1) a fully supervised learning approach, and 2) the same approach enhanced with pre-trained weights and the MixUp data augmentation technique. For mid-RT images, we introduced a novel computational-friendly network architecture that features separate encoders for mid-RT images and registered pre-RT images with their labels. The mid-RT encoder branch integrates information from pre-RT images and labels progressively during the forward propagation. We selected the highest-performing model from each fold and used their predictions to create an ensemble average for inference. In the final test, our models achieved a segmentation performance of 82.38% for pre-RT and 72.53% for mid-RT on aggregated Dice Similarity Coefficient (DSC) as HiLab. Our code is available at https://github.com/WltyBY/HNTS-MRG2024_train_code.

摘要

头颈部肿瘤和转移性淋巴结对于治疗方案规划和预后分析至关重要。对这些结构进行准确的分割和定量分析需要像素级标注,这使得自动分割技术对头颈部癌症的诊断和治疗必不可少。在本研究中,我们调查了多种策略对放疗前(pre-RT)和放疗中期(mid-RT)图像分割的影响。对于pre-RT图像的分割,我们使用了:1)一种完全监督学习方法,以及2)通过预训练权重和MixUp数据增强技术增强的相同方法。对于mid-RT图像,我们引入了一种新型的计算友好型网络架构,该架构具有用于mid-RT图像的单独编码器以及带有标签的配准pre-RT图像。mid-RT编码器分支在正向传播过程中逐步整合来自pre-RT图像和标签的信息。我们从每个折叠中选择性能最佳的模型,并使用它们的预测结果创建一个集成平均值用于推理。在最终测试中,我们的模型在聚合骰子相似系数(DSC)方面,对于pre-RT图像的分割性能达到了82.38%,对于mid-RT图像达到了72.53%,与HiLab相当。我们的代码可在https://github.com/WltyBY/HNTS-MRG2024_train_code获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1383/12022123/48dea01dbe93/nihms-2063608-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验