Suppr超能文献

基于快速且资源高效的分段 nnU-Net 的磁共振成像(MRI)头部和颈部肿瘤分割

Head and Neck Tumor Segmentation on MRIs with Fast and Resource-Efficient Staged nnU-Nets.

作者信息

Tappeiner Elias, Gapp Christian, Welk Martin, Schubert Rainer

机构信息

UMIT Tirol - Private University for Health Sciences and Health Technology, Eduard-Wallnöfer-Zentrum 1, Hall in Tirol 6060, Austria.

出版信息

Head Neck Tumor Segm MR Guid Appl (2024). 2025;15273:87-98. doi: 10.1007/978-3-031-83274-1_6. Epub 2025 Mar 3.

Abstract

MRI-guided radiotherapy (RT) planning offers key advantages over conventional CT-based methods, including superior soft tissue contrast and the potential for daily adaptive RT due to the reduction of the radiation burden. In the Head and Neck (HN) region labor-intensive and time-consuming tumor segmentation still limits full utilization of MRI-guided adaptive RT. The HN Tumor Segmentation for MR-Guided Applications 2024 challenge (HNTS-MRG) aims to improve automatic tumor segmentation on MRI images by providing a dataset with reference annotations for the tasks of pre-RT and mid-RT planning. In this work, we present our approach for the HNTS-MRG challenge. Based on the insights of a thorough literature review we implemented a fast and resource-efficient two-stage segmentation method using the nnU-Net architecture with residual encoders as a backbone. In our two-stage approach we use the segmentation results of a first training round to guide the sampling process for a second refinement stage. For the pre-RT task, we achieved competitive results using only the first-stage nnU-Net. For the mid-RT task, we could significantly increase the segmentation performance of the basic first stage nnU-Net by utilizing the prior knowledge of the pre-RT plan as an additional input for the second stage refinement network. As team alpinists we achieved an aggregated Dice Coefficient of 80.97 for the pre-RT and 69.84 for the mid-RT task on the online test set of the challenge. Our code and trained model weights for the two-stage nnU-Net approach with residual encoders are available at https://github.com/elitap/hntsmrg24.

摘要

磁共振成像引导放射治疗(RT)计划相对于传统的基于CT的方法具有关键优势,包括卓越的软组织对比度以及由于辐射负担减轻而实现每日自适应放疗的潜力。在头颈部(HN)区域,劳动强度大且耗时的肿瘤分割仍然限制了磁共振成像引导自适应放疗的充分利用。2024年头颈部磁共振引导应用肿瘤分割挑战赛(HNTS-MRG)旨在通过提供一个带有放疗前和放疗中期计划任务参考注释的数据集,来改进磁共振图像上的自动肿瘤分割。在这项工作中,我们展示了我们针对HNTS-MRG挑战赛的方法。基于深入文献综述的见解,我们使用带有残差编码器作为主干的nnU-Net架构,实现了一种快速且资源高效的两阶段分割方法。在我们的两阶段方法中,我们使用第一轮训练的分割结果来指导第二轮细化阶段的采样过程。对于放疗前任务,仅使用第一阶段的nnU-Net我们就取得了有竞争力的结果。对于放疗中期任务,我们通过将放疗前计划的先验知识作为第二阶段细化网络的额外输入,显著提高了基本第一阶段nnU-Net的分割性能。作为登山者团队,在挑战赛的在线测试集上,我们在放疗前任务中取得了80.97的聚合骰子系数,在放疗中期任务中取得了69.84的聚合骰子系数。我们带有残差编码器的两阶段nnU-Net方法的代码和训练模型权重可在https://github.com/elitap/hntsmrg24获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f94d/11979668/ca326430908b/nihms-2063609-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验